Skip to main content

Advertisement

Log in

A Primary Study on Down-Regulated miR-9-1 and Its Biological Significances in Methylmalonic Acidemia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Methylmalonic acidemia (MMA) is a metabolic disorder, which is caused by a deficiency of the mitochondrial enzyme methylmalonyl-CoA mutase. MMA diagnosis is dependent on the method of gas chromatography–mass spectrometry, which is expensive, complicated, and time consuming. Currently, microRNAs (miRNAs) have gained considerable interest for its function as a novel class of non-invasive and sensitive biomarkers for the diagnosis of diseases. However, there has been no related report regarding its role in MMA. Our study first detected differentially expressed microRNAs in MMA and found that the expression of miR-9-1 was significantly down-regulated and changed sensitively after VitB12 treatment. Furthermore, we confirmed that miR-9-1 was able to suppress neuronal apoptosis induced by methylmalonate. Taken together, our results suggested that miR-9-1 may act as a potential biomarker for the diagnosis and monitoring of changes in MMA and provide new insights into the pathogenesis of MMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bazzoni F, Rossato M, Fabbri M et al (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad U S A 106(13):5282–5287

    Article  CAS  Google Scholar 

  • Brusque AM, Borba Rosa R, Schuck PF et al (2002) Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int 40(7):593–601

    Article  CAS  PubMed  Google Scholar 

  • Carrillo-Carrasco N, Venditti CP (2012) Combined methylmalonic acidemia and homocystinuria, cblC type. II. Complications, pathophysiology, and outcomes. J Inherit Metab Dis 35(1):103–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C (2006) Methylmalonic and propionic aciduria. Am J Med Genet C: Semin Med Genet 142C:104–112

    Article  CAS  Google Scholar 

  • Fernandes CG, Borges CG, Seminotti B et al (2011) Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol neurobiol 31(5):775–785

    Article  CAS  PubMed  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han LS, Ye J, Qiu WJ et al (2007) Selective screening for inborn errors of metabolism on clinical patients using tandem mass spectrometry in China: a four-year report. J Inherit Metab Dis 30(4):507–514

    Article  CAS  PubMed  Google Scholar 

  • Jin XF, Wu N, Wang L, Li J (2013) Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cell Mol Neurobiol 33(5):601–613

    Article  CAS  PubMed  Google Scholar 

  • Jing L, Jia Y, Lu J, Han R, Li J, Wang S et al (2011) MicroRNA-9 promotes differentiation of mouse bone MSCs into neurons via Notch signaling. Neuroreport 22(5):206–211

    Article  CAS  PubMed  Google Scholar 

  • Jones SW, Watkins G, Le Good N et al (2009) The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthr Cartil 17(4):464–472

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Wu GS, Saraswathy S, Vasconcelos-Santos DV, Rao NA (2012) Immunopathologic processes in sympathetic ophthalmia as signified by microRNA profiling. Invest Ophthalmol Vis Sci 53(7):4197–4204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim DJ, Linnstaedt S, Palma J et al (2011) Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagn 14(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Liu GD, Zhang H, Wang L, Han Q, Zhou SF, Liu P (2013) Molecular hydrogen regulates the expression of miR-9, miR-21 and miR-199 in LPS-activated retinal microglia cells. Int J Ophthalmol 6(3):280–285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 1:S232–240

    Google Scholar 

  • Mc Guire PJ, Parikh A, Diaz GA (2009) Profiling of oxidative stress in patients with inborn errors of metabolism. Mol Genet Metab 98(1–2):173–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McLaughlin BA, Nelson D, Sliver IA, Erecinska M, Chesselet MF (1998) Methylmalonate toxicity in primary neuronal cultures. Neuroscience 86(1):279–290

    Article  CAS  PubMed  Google Scholar 

  • Melo DR, Kowaltowski AJ, Wajner M, Castilho RF (2011) Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr 43(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Kato M, Minakami H, Inoue Y, Morikawa A, Otsuki K et al (2001) Reduced expression of flice-inhibitory protein (FLIP) and NF kappaB is associated with death receptor-induced cell death in human aortic endothelial cells (HAECs). Cytokine 15(2):66–74

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro LR, Della-Pace ID, de Oliveira Ferreira AP et al (2013) Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory. Immunobiology 218(9):1175–1183

    Article  CAS  PubMed  Google Scholar 

  • Richard E, Alvarez-Barrientos A, Pérez B, Desviat LR, Ugarte M (2007) Methylmalonic acidaemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway. J Pathol 213(4):453–461

    Article  CAS  PubMed  Google Scholar 

  • Richard E, Jorge-Finnigan A, Garcia-Villoria J, Merinero B et al (2009) Genetic and cellular studies of oxidative stress in methylmalonic aciduria (MMA) cobalamin deficiency type C (cblC) with homocystinuria (MMACHC). Hum Mutat 30(11):1558–1566

    Article  CAS  PubMed  Google Scholar 

  • Shibata K, Shimokawa H, Yanagihara N, Otsuji Y, Tsutsui M (2013) Nitric oxide synthases and heart failure—lessons from genetically manipulated mice. J UOEH 35(2):147–158

    Article  CAS  PubMed  Google Scholar 

  • Stewart VC, Heales SJ (2003) Nitric oxide-induced mitochondrial dysfunction: implications for neurodegeneration. Free Radic Biol 34(3):287–303

    Article  CAS  Google Scholar 

  • Sun W, Wang Y, Yang Y et al (2011) The screening of inborn errors of metabolism in sick Chinese infants by tandem mass spectrometry and gas chromatography/mass spectrometry. Clin Chim Acta 412(13–14):1270–1274

    Article  CAS  PubMed  Google Scholar 

  • Tu WJ (2011) Methylmalonic acidemia in mainland China. Ann Nutr Metab 58(4):281

    Article  CAS  PubMed  Google Scholar 

  • Wajner M, Coelho JC (1997) Neurological dysfunction in methylmalonic acidaemia is probably related to the inhibitory effect of methylmalonate on brain energy production. J Inherit Metab Dis 20(6):761–768

    Article  CAS  PubMed  Google Scholar 

  • Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H (2010) Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer 9:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Weisfeld-Adams JD, Morrissey MA, Kirmse BM et al (2010) Newborn screening and early biochemical follow-up in combined methylmalonic aciduria and homocystinuria, cblC type, and utility of methionine as a secondary screening analyte. Mol Genet Metab 99(2):116–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuva-Aydemir Y, Simkin A, Gascon E, Gao FB (2011) MicroRNA-9: functional evolution of a conserved small regulatory RNA. RNA Biol 8(4):557–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjie Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Peng, T., Wang, X. et al. A Primary Study on Down-Regulated miR-9-1 and Its Biological Significances in Methylmalonic Acidemia. J Mol Neurosci 53, 280–286 (2014). https://doi.org/10.1007/s12031-013-0218-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0218-y

Keywords

Navigation