Skip to main content

Advertisement

Log in

Acetylcholinesterase Protein Level Is Preserved in the Alzheimer's Brain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) is a key enzyme in the cholinergic nervous system and is one of the most studied proteins in the field of Alzheimer's disease (AD). Moreover, alternative functions of AChE unrelated with the hydrolysis of acetylcholine are suspected. Until now, the majority of investigations on AChE in AD pathology have been focused on the determination of its enzymatic activity level, which is depleted in the AD brain. Despite this overall decrease, AChE activity increases at the vicinity of the two hallmarks of AD, the amyloid plaques and the neurofibrillary tangles (NFT). In fact, AChE may directly interact with Aβ in a manner that increases the deposition of Aβ to form plaques. In the context of protein–protein interactions, we have recently reported that AChE can interact with presenilin-1, the catalytic component of γ-secretase, influencing its expression level and also its activity. However, the alteration of AChE protein in the AD brain has not been determined. Here, we demonstrated by Western blotting and immunohistochemistry that a prominent pool of enzymatically inactive AChE protein existed in the AD brain. The potential significance of these unexpected levels of inactive AChE protein in the AD brain was discussed, especially in the context of protein–protein interactions with β-amyloid and presenilin-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez A, Bronfman F, Pérez CA, Vicente M, Garrido J, Inestrosa NC (1995) Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides. Neurosci Lett 201:49–52

    Article  CAS  PubMed  Google Scholar 

  • Arendt T, Brückner MK, Lange M, Bigl V (1992) Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease resemble embryonic development—a study of molecular forms. Neurochem Int 21:381–396

    Article  CAS  PubMed  Google Scholar 

  • Atack JR, Perry EK, Bonham JR et al (1983) Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10S) form. Neurosci Lett 30:199–204

    Article  Google Scholar 

  • Balasubramanian AS, Bhanumathy CD (1993) Noncholinergic functions of cholinesterases. FASEB J 7:1354–1358

    CAS  PubMed  Google Scholar 

  • Belluti F, Bartolini M, Bottegoni G et al (2011) Benzophenone-based derivatives: a novel series of potent and selective dual inhibitors of acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. Eur J Med Chem 46:1682–1693

    Article  CAS  PubMed  Google Scholar 

  • Berson A, Knobloch M, Hanan M et al (2008) Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain 131:109–119

    Article  PubMed  Google Scholar 

  • Blazquez-Llorca L, Garcia-Marin V, Merino-Serrais P, Avila J, DeFelipe J (2011) Abnormal tau phosphorylation in the thorny excrescences of CA3 hippocampal neurons in patients with Alzheimer's disease. J Alzheimers Dis 26:683–698

    CAS  PubMed  Google Scholar 

  • Blennow K, Zetterberg H, Minthon L et al (2007) Longitudinal stability of CSF biomarkers in Alzheimer's disease. Neurosci Lett 419:18–22

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Brimijoin S, Hammond P, Rakonczay Z (1987) Two-site immunoassay for acetylcholinesterase in brain, nerve, and muscle. J Neurochem 49:555–562

    Article  CAS  PubMed  Google Scholar 

  • Chatel JM, Grassi J, Frober Y, Massoulié J, Vallette FM (1993) Existence of an inactive pool of acetylcholinesterase in chicken brain. Proc Natl Acad Sci U S A 90:2476–2480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciro A, Park J, Burkhard G, Yan N, Geula C (2012) Biochemical differentiation of cholinesterases from normal and Alzheimer's disease cortex. Curr Alzheimer Res 9:138–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darreh-Shori T, Hellström-Lindahl E, Flores-Flores C et al (2004) Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated Alzheimer's disease patients. J Neurochem 88:1102–1113

    Article  CAS  PubMed  Google Scholar 

  • Darreh-Shori T, Kadir A, Almkvist O et al (2008) Inhibition of acetylcholinesterase in CSF versus brain assessed by 11C-PMP PET in AD patients treated with galantamine. Neurobiol Aging 29:168–184

    Article  CAS  PubMed  Google Scholar 

  • Darvesh S, Reid GA, Martin E (2010) Biochemical and histochemical comparison of cholinesterases in normal and Alzheimer brain tissues. Curr Alzheimer Res 7:386–400

    Article  CAS  PubMed  Google Scholar 

  • Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 2:1403

    Article  CAS  PubMed  Google Scholar 

  • Dori A, Cohen J, Silverman WF, Pollack Y, Soreq H (2005) Functional manipulations of acetylcholinesterase splice variants highlight alternative splicing contributions to murine neocortical development. Cereb Cortex 15:419–430

    Article  PubMed  Google Scholar 

  • Fodero LR, Sáez-Valero J, McLean CA et al (2002) Altered glycosylation of acetylcholinesterase in APP (SW) Tg2576 transgenic mice occurs prior to amyloid plaque deposition. J Neurochem 81:441–448

    Article  CAS  PubMed  Google Scholar 

  • García-Ayllón MS, Silveyra MX, Candela A et al (2006) Changes in liver and plasma acetylcholinesterase in rats with cirrhosis induced by bile duct ligation. Hepatology 43:444–453

    Article  PubMed  Google Scholar 

  • García-Ayllón MS, Silveyra MX, Andreasen N, Brimijoin S, Blennow K, Sáez-Valero J (2007) Cerebrospinal fluid acetylcholinesterase changes after treatment with donepezil in patients with Alzheimer's disease. J Neurochem 10:1701–1711

    Article  Google Scholar 

  • García-Ayllón MS, Riba-Llena I, Serra-Basante C, Alom J, Boopathy R, Sáez-Valero J (2010) Altered levels of acetylcholinesterase in Alzheimer plasma. PLoS One 5:e8701

    Article  PubMed Central  PubMed  Google Scholar 

  • García-Ayllón MS, Small DH, Avila J, Sáez-Valero J (2011) Revisiting the role of acetylcholinesterase in Alzheimer's disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci 4:22

    Article  PubMed Central  PubMed  Google Scholar 

  • García-Ayllón MS, Millán C, Serra-Basante C, Bataller R, Sáez-Valero J (2012) Readthrough acetylcholinesterase is increased in human liver cirrhosis. PLoS One 7:e44598

    Article  PubMed Central  PubMed  Google Scholar 

  • García-Palomero E, Muñoz P, Usan P et al (2008) Potent beta-amyloid modulators. Neurodegener Dis 5:153–156

    Article  PubMed  Google Scholar 

  • Geula C, Mesulam M (1989) Special properties of cholinesterases in the cerebral cortex of Alzheimer's disease. Brain Res 498:185–189

    Article  CAS  PubMed  Google Scholar 

  • Giacobini E (2003) Cholinergic function and Alzheimer's disease. Int J Geriatr Psychiatry 18:1–5

    Article  Google Scholar 

  • Gomez-Ramos P, Mufson EJ, Moran MA (1992) Ultrastructural localization of acetylcholinesterase in neurofibrillary tangles, neuropil threads and senile plaques in aged and Alzheimer's brain. Brain Res 569:229–237

    Article  CAS  PubMed  Google Scholar 

  • Greenberg DS, Toiber D, Berson A, Soreq H (2010) Acetylcholinesterase variants in Alzheimer's disease: from neuroprotection to programmed cell death. Neurodegener Dis 7:60–63

    Article  CAS  PubMed  Google Scholar 

  • Greenfield SA, Zimmermann M, Bond CE (2008) Non-hydrolytic functions of acetylcholinesterase. The significance of C-terminal peptides. FEBS J 275:604–611

    Article  CAS  PubMed  Google Scholar 

  • Grisaru D, Pick M, Perry C et al (2006) Hydrolytic and nonenzymatic functions of acetylcholinesterase comodulate hemopoietic stress responses. J Immunol 176:27–35

    Article  CAS  PubMed  Google Scholar 

  • Hammond P, Brimijoin S (1988) Acetylcholinesterase in Huntington's and Alzheimer's diseases: simultaneous enzyme assay and immunoassay of multiple brain regions. J Neurochem 50:1111–1116

    Article  CAS  PubMed  Google Scholar 

  • Herholz K (2008) Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease. Eur J Nucl Med Mol Imaging 35:25–29

    Article  Google Scholar 

  • Hu W, Gray NW, Brimijoin S (2003) Amyloid-beta increases acetylcholinesterase expression in neuroblastoma cells by reducing enzyme degradation. J Neurochem 86:470–478

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Alvarez A, Pérez CA et al (1996a) Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–891

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Alvarez A, Calderón F (1996b) Acetylcholinesterase is a senile plaque component that promotes assembly of amyloid beta-peptide into Alzheimer's filaments. Mol Psychiatry 1:359–361

    CAS  PubMed  Google Scholar 

  • Iyo M, Namba H, Fukushi K, Shinotoh H et al (1997) Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer's disease. Lancet 349:1805–1809

    Article  CAS  PubMed  Google Scholar 

  • Kaether C, Haass C, Steiner H (2006) Assembly, trafficking and function of gamma-secretase. Neurodegener Dis 3:275–283

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A et al (1987) The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem 12:219–221

    Article  CAS  PubMed  Google Scholar 

  • Klegeris A, Budd TC, Greenfield SA (1994) Acetylcholinesterase activation of peritoneal macrophages is independent of catalytic activity. Cell Mol Neurobiol 14:89–98

    Article  CAS  PubMed  Google Scholar 

  • Konings CH, Kuiper MA, Mulder C, Calliauw J, Wolters EC (1995) CSF acetylcholinesterase in Parkinson disease: decreased enzyme activity and immunoreactivity in demented patients. Clin Chim Acta 235:101–105

    Article  CAS  PubMed  Google Scholar 

  • Krejci E, Duval N, Chatonnet A, Vincens P, Massoulié J (1991) Cholinesterase-like domains in enzymes and structural proteins: functional and evolutionary relationships and identification of a catalytically essential aspartic acid. Proc Natl Acad Sci U S A 88:6647–6651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kreutz F, Scherer EB, Ferreira AG et al (2013) Alterations on Na+, K +−ATPase and acetylcholinesterase activities induced by amyloid-β peptide in rat brain and GM1 ganglioside neuroprotective action. Neurochem Res 38:2342–2350

    Article  CAS  PubMed  Google Scholar 

  • Lahiri DK, Farlow MR, Nurnberger JI Jr, Greig NH (1997) Effects of cholinesterase inhibitors on the secretion of beta-amyloid precursor protein in cell cultures. Ann N Y Acad Sci 826:416–421

    Article  CAS  PubMed  Google Scholar 

  • Lau P, Bossers K, Janky R et al (2013) Alteration of the microRNA network during the progression of Alzheimer's disease. EMBO Mol Med 5:1613–1634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Layer PG (1995) Nonclassical roles of cholinesterases in the embryonic brain and possible links to Alzheimer disease. Alzheimer Dis Assoc Disord 9:29–36

    Article  PubMed  Google Scholar 

  • Lleó A, Greenberg SM, Growdon JH (2006) Current pharmacotherapy for Alzheimer's disease. Annu Rev Med 57:513–533

    Article  PubMed  Google Scholar 

  • Massoulié J (2002) The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11:130–143

    Article  PubMed  Google Scholar 

  • Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41:31–91

    Article  PubMed  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer's disease and Down syndrome. Proc Natl Acad Sci U S A 82:4245–4249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res 45:117–127

    Article  CAS  PubMed  Google Scholar 

  • Meshorer E, Soreq H (2006) Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends Neurosci 29:216–224

    Article  CAS  PubMed  Google Scholar 

  • Mishra N, Sasmal D, Singh KK (2013) Attenuating Aβ1-42-induced toxicity by a novel acetylcholinesterase inhibitor. Neuroscience 250:309–319

    Article  CAS  PubMed  Google Scholar 

  • Mori F, Lai CC, Fusi F, Giacobini E (1995) Cholinesterase inhibitors increase secretion of APPs in rat brain cortex. Neuroreport 6:633–636

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Maeda J, Shimada H et al (2012) Molecular imaging of dementia. Psychogeriatrics 12:106–114

    Article  PubMed  Google Scholar 

  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258:304–307

    Article  CAS  PubMed  Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1:189

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen AG, Arends J, Larsen SO (1989) Evaluation and quality control of a monoclonal antibody based enzyme antigen immunoassay of acetylcholinesterase in amniotic fluid. Scand J Clin Lab Invest 49:503–511

    Article  CAS  PubMed  Google Scholar 

  • Rossner S, Ueberham U, Schliebs R, Pérez-Polo JR, Big V (1998) The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog Neurobiol 56:541–569

    Article  CAS  PubMed  Google Scholar 

  • Rotundo RL (1988) Biogenesis of acetylcholinesterase molecular forms in muscle. Evidence for a rapidly turning over, catalytically inactive precursor pool. J Biol Chem 263:19398–19406

    CAS  PubMed  Google Scholar 

  • Sáez-Valero J, Tornel PL, Muñoz-Delgado E, Vidal CJ (1993) Amphiphilic and hydrophilic forms of acetyl- and butyrylcholinesterase in human brain. J Neurosci Res 35:678–689

    Article  PubMed  Google Scholar 

  • Sáez-Valero J, Sberna G, McLean CA, Masters CL, Small DH (1997) Glycosylation of acetylcholinesterase as diagnostic marker for Alzheimer's disease. Lancet 350:929

    Article  PubMed  Google Scholar 

  • Sáez-Valero J, Sberna G, McLean CA, Small DH (1999) Molecular isoform distribution and glycosylation of acetylcholinesterase are altered in brain and cerebrospinal fluid of patients with Alzheimer's disease. J Neurochem 72:1600–1608

    Article  PubMed  Google Scholar 

  • Sáez-Valero J, Mok SS, Small DH (2000) An unusually glycosylated form of acetylcholinesterase is a CSF biomarker for Alzheimer's disease. Acta Neurol Scand 176:49–52

    Article  Google Scholar 

  • Sáez-Valero J, de Ceballos ML, Small DH, de Felipe C (2002) Changes in molecular isoform distribution of acetylcholinesterase in rat cortex and cerebrospinal fluid after intracerebroventricular administration of amyloid beta-peptide. Neurosci Lett 325:199–202

    Article  PubMed  Google Scholar 

  • Sáez-Valero J, Fodero LR, White AR, Barrow CJ, Small DH (2003) Acetylcholinesterase is increased in mouse neuronal and astrocyte cultures after treatment with beta-amyloid peptides. Brain Res 965:283–286

    Article  PubMed  Google Scholar 

  • Santos SC, Vala I, Miguel C et al (2007) Expression and subcellular localization of a novel nuclear acetylcholinesterase protein. J Biol Chem 282:25597–25603

    Article  CAS  PubMed  Google Scholar 

  • Sberna G, Sáez-Valero J, Beyreuther K, Masters CL, Small DH (1997) The amyloid b-protein of Alzheimer's disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J Neurochem 69:1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Sberna G, Sáez-Valero J, Li QX et al (1998) Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the beta-amyloid protein precursor of Alzheimer's disease. J Neurochem 71:723–731

    Article  CAS  PubMed  Google Scholar 

  • Shaltiel G, Hanan M, Wolf Y et al (2013) Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 218:59–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silveyra MX, Evin G, Montenegro MF et al (2008) Presenilin 1 interacts with acetylcholinesterase and alters its enzymatic activity and glycosylation. Mol Cell Biol 28:2908–2919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silveyra MX, García-Ayllón MS, Serra-Basante C et al (2012a) Changes in acetylcholinesterase expression are associated with altered presenilin-1 levels. Neurobiol Aging 33:627.e27-37

    Google Scholar 

  • Silveyra MX, García-Ayllón MS, De Barreda EG et al (2012) Altered expression of brain acetylcholinesterase in FTDP-17 human tau transgenic mice. Neurobiol Aging 33:624.e23-34

    Google Scholar 

  • Small DH (2005) Acetylcholinesterase inhibitors for the treatment of dementia in Alzheimer's disease: do we need new inhibitors? Expert Opin Emerg Drugs 10:817–825

    Article  CAS  PubMed  Google Scholar 

  • Small DH, Michaelson S, Sberna G (1996) Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem Int 28:453–483

    Article  CAS  PubMed  Google Scholar 

  • Soreq H, Seidman S (2001) Acetylcholinesterase—new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  CAS  PubMed  Google Scholar 

  • Sternfeld M, Ming G, Song H et al (1998) Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini. J Neurosci 18:1240–1249

    CAS  PubMed  Google Scholar 

  • Sternfeld M, Shoham S, Klein O, Flores-Flores C, Evron T, Idelson GH et al (2000) Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc Natl Acad Sci U S A 97:8647–8652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stieger S, Brodbeck U, Witzemann V (1987) Inactive monomeric acetylcholinesterase in the low-salt-soluble extract of the electric organ from Torpedo marmorata. J Neurochem 49:460–467

    Article  CAS  PubMed  Google Scholar 

  • Toiber D, Berson A, Greenberg D, Melamed-Book N, Diamant S, Soreq H (2008) N-acetylcholinesterase-induced apoptosis in Alzheimer's disease. PLoS One 3:e3108

    Article  PubMed Central  PubMed  Google Scholar 

  • Ulrich J, Meier-Ruge W, Probst A, Meier E, Ipsen S (1990) Senile plaques: staining for acetylcholinesterase and A4 protein: a comparative study in the hippocampus and entorhinal cortex. Acta Neuropathol 80:624–628

    Article  CAS  PubMed  Google Scholar 

  • Viayna E, Sabate R, Muñoz-Torrero D (2013) Dual inhibitors of β-amyloid aggregation and acetylcholinesterase as multi-target anti-Alzheimer drug candidates. Curr Top Med Chem 13:1820–1842

    Article  CAS  PubMed  Google Scholar 

  • Weikert T, Rathjen FG, Layer PG (1994) Use of ELISA to G4 antigen to quantitate neurite outgrowth in the chick both in vivo and in vitro. J Neurochem 62:1570–1577

    Article  CAS  PubMed  Google Scholar 

  • Wright CI, Geula C, Mesulam MM (1993) Neurological cholinesterases in the normal brain and in Alzheimer's disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann Neurol 34:373–384

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Jiang H, Wan YH et al (2011) Induction of a 55 kDa acetylcholinesterase protein during apoptosis and its negative regulation by the Akt pathway. J Mol Cell Biol 3:250–259

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann M, Borroni B, Cattabeni F, Padovani A, Di Luca M (2005) Cholinesterase inhibitors influence APP metabolism in Alzheimer disease patients. Neurobiol Dis 19:237–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. A. Rábano (Fundación CIEN, Spain), I. Ferrer (Servicio de Anatomía Patológica, IDIBELL-Hospital Universitario de Bellvitge, Barcelona, Spain), and R. Alcaraz (Instituto Vasco de Medicina Legal, Bilbao, Spain) for assistance with human brain samples. We also thank Dr. Javier Defelipe (Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid, Spain) for technical facilities and advice. MLC is supported by a Consolider-Predoctoral fellowship from the CSIC, Spain. This work was supported by grants from Fundación CIEN-Reina Sofía, Fondo de Investigaciones Sanitarias (FIS; Grant PS09/00684) from Spain to JSV and Fondo de Investigaciones Sanitarias (FIS; Grant CP11/00312) to MSGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Sáez-Valero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campanari, ML., García-Ayllón, MS., Blazquez-Llorca, L. et al. Acetylcholinesterase Protein Level Is Preserved in the Alzheimer's Brain. J Mol Neurosci 53, 446–453 (2014). https://doi.org/10.1007/s12031-013-0183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0183-5

Keywords

Navigation