Skip to main content

Advertisement

Log in

Remote Ischemic Postconditioning Promotes the Survival of Retinal Ganglion Cells after Optic Nerve Injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Ischemic conditioning, the application of a mild ischemic stimulus to an ischemia-sensitive structure like the heart or brain either before (preconditioning) or after (postconditioning) its exposure to a lethal ischemic insult, is known to switch on endogenous protective mechanisms. However, most studies of its neuroprotective effect in the central nervous system (CNS) have focused on ischemic damage or related conditions like hypoxia, while its potential in treating other neural diseases remains uncertain. In particular, the recent discovery of remote ischemic postconditioning whereby mild ischemia applied to a region remote from the target after the main ischemic insult also confers protection offers an attractive paradigm to study its potential in other types of neural injury. Retinal ganglion cells damaged by optic nerve transection undergo extensive cell death. However, application of a series of mild ischemic/reperfusion cycles to the hind limb (limb remote ischemic postconditioning) at 10 min or 6 h after optic nerve cut was found to promote ganglion cell survival at 7 days post-injury, with the 10 min postconditioning still exerting protection at 14 days post-injury. Concomitant with the increased ganglion cell survival, 51 % more ganglion cells expressed the small heat shock protein HSP27, when remote ischemic postconditioning was performed at 10 min post-injury, as compared to the sham conditioning group. Our results highlight the potential of using remote ischemic postconditioning as a noninvasive neuroprotective strategy in different CNS disorders like spinal cord and traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Belforte N, Sande PH, de ZN, Fernandez DC, Silberman DM, Chianelli MS, Rosenstein RE (2011) Ischemic tolerance protects the rat retina from glaucomatous damage. PLoS One 6:e23763

    Article  PubMed  CAS  Google Scholar 

  • Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158

    Article  PubMed  CAS  Google Scholar 

  • Cho EYP, Wong WK (2005) Transient induction of heat shock protein 27 in axotomized retinal ganglion cells, and their sustained up-regulation in regenerating ganglion cells. ARVO 2005 Annual Meeting189/B163

  • Cui Q, Yip HK, Zhao RC, So KF, Harvey AR (2003) Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol Cell Neurosci 22:49–61

    Article  PubMed  CAS  Google Scholar 

  • Dreixler JC, Shaikh AR, Alexander M, Savoie B, Roth S (2010) Postischemic conditioning in the rat retina is dependent upon ischemia duration and is not additive with ischemic preconditioning. Exp Eye Res 91:844–852

    Article  PubMed  CAS  Google Scholar 

  • Fernandez DC, Bordone MP, Chianelli MS, Rosenstein RE (2009) Retinal neuroprotection against ischemia–reperfusion damage induced by postconditioning. Invest Ophthalmol Vis Sci 50:3922–3930

    Article  PubMed  Google Scholar 

  • Fernandez DC, Sande PH, Chianelli MS, na Marcos HJ, Rosenstein RE (2011) Induction of ischemic tolerance protects the retina from diabetic retinopathy. Am J Pathol 178:2264–2274

    Article  PubMed  Google Scholar 

  • Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301

    Article  PubMed  CAS  Google Scholar 

  • Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448

    Article  PubMed  CAS  Google Scholar 

  • Krueger-Naug AM, Emsley JG, Myers TL, Currie RW, Clarke DB (2002) Injury to retinal ganglion cells induces expression of the small heat shock protein Hsp27 in the rat visual system. Neuroscience 110:653–665

    Article  PubMed  CAS  Google Scholar 

  • Latchman DS (2005) HSP27 and cell survival in neurones. Int J Hyperthermia 21:393–402

    Article  PubMed  CAS  Google Scholar 

  • Lim SY, Hausenloy DJ (2012) Remote ischemic conditioning: from bench to bedside. Front Physiol 3:27

    Article  PubMed  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  PubMed  CAS  Google Scholar 

  • Pignataro G, Meller R, Inoue K, Ordonez AN, Ashley MD, Xiong Z, Gala R, Simon RP (2008) In vivo and in vitro characterization of a novel neuroprotective strategy for stroke: ischemic postconditioning. J Cereb Blood Flow Metab 28:232–241

    Article  PubMed  CAS  Google Scholar 

  • Ren C, Gao X, Niu G, Yan Z, Chen X, Zhao H (2008) Delayed postconditioning protects against focal ischemic brain injury in rats. PLoS One 3:e3851

    Article  PubMed  Google Scholar 

  • Ren C, Yan Z, Wei D, Gao X, Chen X, Zhao H (2009) Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res 1288:88–94

    Article  PubMed  CAS  Google Scholar 

  • Roth S (2004) Endogenous neuroprotection in the retina. Brain Res Bull 62:461–466

    Article  PubMed  CAS  Google Scholar 

  • Sun F, He Z (2010) Neuronal intrinsic barriers for axon regeneration in the adult CNS. Curr Opin Neurobiol 20:510–518

    Article  PubMed  CAS  Google Scholar 

  • Sun XC, Xian XH, Li WB, Li L, Yan CZ, Li QJ, Zhang M (2010) Activation of p38 MAPK participates in brain ischemic tolerance induced by limb ischemic preconditioning by upregulating HSP 70. Exp Neurol 224:347–355

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Tong L, Luan Q, Deng J, Li Y, Li Z, Dong H, Xiong L (2012) Protective effect of delayed remote limb ischemic postconditioning: role of mitochondrial K(ATP) channels in a rat model of focal cerebral ischemic reperfusion injury. J Cereb Blood Flow Metab 32:851–859

    Article  PubMed  CAS  Google Scholar 

  • Wang JY, Shen J, Gao Q, Ye ZG, Yang SY, Liang HW, Bruce IC, Luo BY, Xia Q (2008) Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke 39:983–990

    Article  PubMed  Google Scholar 

  • Williams KL, Rahimtula M, Mearow KM (2005) Hsp27 and axonal growth in adult sensory neurons in vitro. BMC Neurosci 6:24

    Article  PubMed  Google Scholar 

  • Xing B, Chen H, Zhang M, Zhao D, Jiang R, Liu X, Zhang S (2008) Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke 39:2362–2369

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Ren C, Chen X, Shen J (2012) From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr Drug Targets 13:173–187

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Fathali N, Lekic T, Ostrowski RP, Chen C, Martin RD, Tang J, Zhang JH (2011) Remote limb ischemic postconditioning protects against neonatal hypoxic–ischemic brain injury in rat pups by the opioid receptor/Akt pathway. Stroke 42:439–444

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the General Research Fund CUHK463309 of the Research Grants Council of Hong Kong (E.Y.P. Cho), the National Natural Science Foundation of China (81171154, O. Sha), and a postgraduate studentship of the Chinese University of Hong Kong (X. Liu). The authors are grateful to Ms. Anny Cheung for the technical help provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Y. P. Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Sha, O. & Cho, E.Y.P. Remote Ischemic Postconditioning Promotes the Survival of Retinal Ganglion Cells after Optic Nerve Injury. J Mol Neurosci 51, 639–646 (2013). https://doi.org/10.1007/s12031-013-0036-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0036-2

Keywords

Navigation