Skip to main content
Log in

Mechanisms for Endothelial Monocyte-Activating Polypeptide-II-Induced Opening of the Blood–Tumor Barrier

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Endothelial monocyte-activating polypeptide-II (EMAP-II) increases blood–tumor barrier (BTB) permeability by inducing alterations in the tight junction (TJ) complex between brain endothelial cells. In the present study, an in vitro BTB model was used to search for the interacting and functional cell surface molecule of EMAP-II as well as the signaling pathway involved in the EMAP-II-induced BTB hyperpermeability. Our results revealed that EMAP-II-induced increase in BTB permeability and down-regulation of TJ-related proteins occludin and ZO-1 were associated with its binding to ATP synthase α subunit (α-ATP synthase) on the surface of rat brain microvascular endothelial cells (BMECs). In addition, we observed that EMAP-II administration activated protein kinase C (PKC) and induced the translocation of PKC from the cytosolic to the membrane fraction of BMECs. The effects of EMAP-II on BTB permeability as well as expression levels of occludin and ZO-1 in BMECs were significantly diminished by H7, the inhibitor of PKC. In summary, these data suggest that EMAP-II increases BTB permeability through α-ATP synthase on the surface of BMECs, and PKC signaling pathway might be involved in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arechaga I, Jones PC (2001) Quick guide: ATP synthase. Curr Biol 11(4):R117

    Article  PubMed  CAS  Google Scholar 

  • Augereau O, Claverol S, Boudes N et al (2005) Identification of tyrosinephosphorylated proteins of the mitochondrial oxidative phosphorylation machinery. Cell Mol Life Sci 62(13):1478–1488

    Article  PubMed  CAS  Google Scholar 

  • Barnett G, Jakobsen AM, Tas M et al (2000) Prostate adenocarcinoma cells release the novel proinflammatory polypeptide EMAP-II in response to stress. Cancer Res 60(11):2850–2857

    PubMed  CAS  Google Scholar 

  • Berger AC, Alexander HR, Tang G et al (2000) Endothelial monocyte activating polypeptide II induces endothelial cell apoptosis and may inhibit tumor angiogenesis. Microvasc Res 60(1):70–80

    Article  PubMed  CAS  Google Scholar 

  • Black KL, Ningaraj NS (2004) Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control 11(3):165–173

    PubMed  Google Scholar 

  • Burwick NR, Wahl ML, Fang J et al (2005) An inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem 280(3):1740–1745

    Article  PubMed  CAS  Google Scholar 

  • Chang SY, Park SG, Kim S et al (2002) Interaction of the C-terminal Domain of p43 and the alpha subunit of ATP Synthase. Its functional implication in endothelial cell proliferation. J Biol Chem 277(10):8388–8394

    Article  PubMed  CAS  Google Scholar 

  • Fleegal MA, Hom S, Borg LK et al (2005) Activation of PKC modulates blood–brain barrier endothelial cell permeability changes induced by hypoxia and posthypoxic reoxyenation. Am J Physiol Heart Circ Physiol 289(5):H2012–H2019

    Article  PubMed  CAS  Google Scholar 

  • Gloor SM, Wachtel M, Bolliger MF et al (2001) Molecular and cellular permeability control at the blood–brain barrier. Brain Res Brain Res Rev 36(2–3):258–264

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Wu MH, Korompai F et al (2003) Upregulation of PKC gene and isozymes in cardiovascular tissues during early stages of experimental diabetes. Physiol Genomics 12(2):139–146

    PubMed  CAS  Google Scholar 

  • Harhaj NS, Antonetti DA (2004) Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36(7):1206–1237

    Article  PubMed  CAS  Google Scholar 

  • Karczewski J, Groot J (2000) Molecular physiology and pathophysiology of tight junctions: III. Tight junction regulation by intracellular messengers: differences in response within and between epithelia. Am J Physiol Gastrointest Liver Physiol 279(4):G660–G665

    PubMed  CAS  Google Scholar 

  • Liu LB, Xue YX, Liu YH et al (2008) Bradykinin increases blood–tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res 86(5):1153–1168

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Xue YX (2010) RhoA-mediated potential regulation of blood–tumor barrier permeability by bradykinin. J Mol Neurosci 42(1):67–73

    Article  PubMed  Google Scholar 

  • Newton AC (1997) Regulation of protein kinase C. Curr Opin Cell Biol 9(2):161–167

    Article  PubMed  CAS  Google Scholar 

  • Opii WO, Nukala VN, Sultana R et al (2007) Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. J Neurotrauma 24(5):772–789

    Article  PubMed  Google Scholar 

  • Qiu LB, Ding GR, Li KC et al (2010) The role of protein kinase C in the opening of blood–brain barrier induced by electromagnetic pulse. Toxicology 273(1–3):29–34

    Article  PubMed  CAS  Google Scholar 

  • Ron D, Kazanietz MG (1999) New insight into the regulation of protein kinase C and novel phorbol ester receptors. FASEB J 13(13):1658–1676

    PubMed  CAS  Google Scholar 

  • Schmitz HP, Lorberg A, Heinisch JJ (2002) Regulation of yeast protein kinase C activity by interaction with the small GTPase Rho1p through its aminoterminal HR1 domain. Mol Microbiol 44(3):829–840

    Article  PubMed  CAS  Google Scholar 

  • Scotet E, Martinez LO, Grant E et al (2005) Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22(1):71–80

    Article  PubMed  CAS  Google Scholar 

  • Shalak V, Guigou L, Kaminska M et al (2007) Characterization of p43 (ARF), a derivative of the p43 component of multiaminoacyl-tRNA synthetase complex released during apoptosis. J Biol Chem 282(15):10935–10943

    Article  PubMed  CAS  Google Scholar 

  • Siegal T, Zylber-Katz E (2002) Strategies for increasing drug delivery to the brain: focus on brain lymphoma. Clin Pharmacokinet 41(3):171–186

    Article  PubMed  CAS  Google Scholar 

  • Slater SJ, Seiz JL, Stagliano BA et al (2001) Interaction of protein kinase C isozysmes with Rho GTPases. Biochemistry 40(14):4437–4445

    Article  PubMed  CAS  Google Scholar 

  • Stamatovic SM, Dimitrijevic OB, Keep RF et al (2006) Protein kinase Cα-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 281(13):8379–8388

    Article  PubMed  CAS  Google Scholar 

  • Wang YB, Peng C, Liu YH (2007) Low dose of bradykinin selectively increases intracellular calcium in glioma cells. J Neurol Sci 258(1–2):44–51

    Article  PubMed  CAS  Google Scholar 

  • Willis CL, Meske DS, Davis TP (2010) PKC activation modulates reversible increase in cortical blood–brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxyenation. J Cereb Blood Flow Metab 30(11):1847–1859

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 38(6):323–337

    Article  PubMed  CAS  Google Scholar 

  • Xie H, Xue YX, Liu LB et al (2010) Endothelial-monocyte-activating polypeptide II increases blood–tumor barrier permeability by down-regulating the expression of tight junction associated proteins. Brain Res 1319:13–20

    Article  PubMed  CAS  Google Scholar 

  • Xie H, Xue YX, Liu LB et al (2011) Role of RhoA/ROCK signaling in Endothelial- monocyte-activating polypeptide II opening of the blood–tumor barrier. J Mol Neurosci (Accepted)

  • Yuan SY (2002) Protein kinase signaling in the modulation of microvascular permeability. Vascul Pharmacol 39(4–5):213–223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the Natural Science Foundation of China (Nos. 81172197, 30872656, 30973079, 81001029, 81072056), the special fund for Scientific Research of Doctor-degree Subjects in Colleges and Universities, (Nos. 20092104110015, 20102104110009) and Shenyang Science and Technology Plan Projects (Nos. F-10-205-1-22, F-10-205-1-37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-hui Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Liu, Yh., Xue, Yx. et al. Mechanisms for Endothelial Monocyte-Activating Polypeptide-II-Induced Opening of the Blood–Tumor Barrier. J Mol Neurosci 47, 408–417 (2012). https://doi.org/10.1007/s12031-011-9657-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9657-5

Keywords

Navigation