Skip to main content

Advertisement

Log in

Frontotemporal Dementia: From Mendelian Genetics Towards Genome Wide Association Studies

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Frontotemporal lobar degeneration is the most common cause of dementia of non-Alzheimer's type worldwide. It manifests, clinically, with behavioural changes and language impairment and is pathologically associated with tau- or ubiquitin-positive inclusions detected in neurons and glial cells of the frontal and temporal lobes in the brain. Genetic variations in the microtubule-associated protein tau and progranulin genes explain almost 50% of familial cases, whilst variations in TAR DNA-binding protein, charged multivescicular body protein 2B, valosin-containing protein and fused in sarcoma genes contribute to <5% of cases. The rapidly developing investigative techniques available to geneticists such as genome-wide association studies, whole-exome sequencing and, soon, whole-genome sequencing promise to contribute to the unravelling of the genetic architecture of this complex disease and, in the future, to the development of more sensitive, accurate and effective diagnostic and treatment measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad ST, Sweeney ST, Lee JA, Sweeney NT, Gao FB (2009) Genetic screen identifies serpin5 as a regulator of the toll pathway and CHMP2B toxicity associated with frontotemporal dementia. Proc Natl Acad Sci U S A 106:12168–12173

    PubMed  Google Scholar 

  • Baba Y, Tsuboi Y, Baker MC, Uitti RJ, Hutton ML, Dickson DW (2005) The effect of tau genotype on clinical features in FTDP-17. Parkinsonism Relat Disord 11:205–208

    PubMed  Google Scholar 

  • Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    PubMed  CAS  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    PubMed  CAS  Google Scholar 

  • Benussi L, Binetti G, Sina E, Gigola L, Bettecken T, Meitinger T et al (2008) A novel deletion in progranulin gene is associated with FTDP-17 and CBS. Neurobiol Aging 29:427–435

    PubMed  CAS  Google Scholar 

  • Benussi L, Ghidoni R, Pegoiani E, Moretti DV, Zanetti O, Binetti G (2009) Progranulin Leu271LeufsX10 is one of the most common FTLD and CBS associated mutations worldwide. Neurobiol Dis 33:379–385

    PubMed  CAS  Google Scholar 

  • Borroni B, Yancopoulou D, Tsutsui M, Padovani A, Sawcer SJ, Hodges JR (2005) Association between tau H2 haplotype and age at onset in frontotemporal dementia. Arch Neurol 62:1419–1422

    PubMed  Google Scholar 

  • Brown J, Ashworth A, Gydesen S, Sorensen A, Rossor M, Hardy J et al (1995) Familial non-specific dementia maps to chromosome 3. Hum Mol Genet 4:1625–1628

    PubMed  CAS  Google Scholar 

  • Buee L, Delacourte A (1999) Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick's disease. Brain Pathol 9:681–693

    PubMed  CAS  Google Scholar 

  • Caffrey TM, Wade-Martins R (2007) Functional MAPT haplotypes: bridging the gap between genotype and neuropathology. Neurobiol Dis 27:1–10

    PubMed  CAS  Google Scholar 

  • Cannon A, Baker M, Boeve B, Josephs K, Knopman D, Petersen R et al (2006) CHMP2B mutations are not a common cause of frontotemporal lobar degeneration. Neurosci Lett 398:83–84

    PubMed  CAS  Google Scholar 

  • Carrasquillo MM, Nicholson AM, Finch N, Gibbs JR, Baker M, Rutherford NJ (2010) Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. Am J Hum Genet 87:890–897

    PubMed  CAS  Google Scholar 

  • Coppola G, Karydas A, Rademakers R, Wang Q, Baker M, Hutton M et al (2008) Gene expression study on peripheral blood identifies progranulin mutations. Ann Neurol 64:92–96

    PubMed  CAS  Google Scholar 

  • Cruchaga C, Graff C, Chiang HH, Wang J, Hinrichs AL, Spiegel N et al (2011) Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch Neurol 68:581–586

    Google Scholar 

  • Cruts M, Van Broeckhoven C (2008) Loss of progranulin function in frontotemporal lobar degeneration. Trends Genet 24:186–194

    PubMed  CAS  Google Scholar 

  • Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924

    PubMed  CAS  Google Scholar 

  • Daniel R, He Z, Carmichael KP, Halper J, Bateman A (2000) Cellular localization of gene expression for progranulin. J Histochem Cytochem 48:999–1009

    PubMed  CAS  Google Scholar 

  • Dickson DW, Bergeron C, Chin SS, Duyckaerts C, Horoupian D, Ikeda K et al (2002) Office of rare diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 61:935–946

    PubMed  CAS  Google Scholar 

  • Dickson DW, Rademakers R, Hutton ML (2007) Progressive supranuclear palsy: pathology and genetics. Brain Pathol 17:74–82

    PubMed  CAS  Google Scholar 

  • Dormann D, Capell A, Carlson AM, Shankaran SS, Rodde R, Neumann M et al (2009) Proteolytic processing of TAR DNA binding protein-43 by caspases produces c-terminal fragments with disease defining properties independent of progranulin. J Neurochem 110:1082–1094

    PubMed  CAS  Google Scholar 

  • Ferrari R, Kapogiannis D, Huey ED, Grafman J, Hardy J, Momeni P (2010) Novel missense mutation in charged multivesicular body 1021 protein 2B in a patient with frontotemporal dementia. Alzheimer Dis Assoc Disord 24:397–401

    Google Scholar 

  • Ferrer I, Santpere G, van Leeuwen FW (2008) Argyrophilic grain disease. Brain 131:1416–1432

    PubMed  Google Scholar 

  • Finch N, Baker M, Crook R, Swanson K, Kuntz K, Surtees R (2009) Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132:583–591

    PubMed  Google Scholar 

  • Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M et al (2011) TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76:467–474

    PubMed  CAS  Google Scholar 

  • Forman MS, Mackenzie IR, Cairns NJ, Swanson E, Boyer PJ, Drachman DA et al (2006) Novel ubiquitin neuropathology in frontotemporal dementia with valosin-containing protein gene mutations. J Neuropathol Exp Neurol 65:571–581

    PubMed  CAS  Google Scholar 

  • Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Google Scholar 

  • Ghanim M, Guillot-Noel L, Pasquier F, Jornea L, Deramecourt V, Dubois B et al (2010) CHMP2B mutations are rare in French families with frontotemporal lobar degeneration. J Neurol 257:2032–2036

    PubMed  Google Scholar 

  • Ghidoni R, Signorini S, Barbiero L, Sina E, Cominelli P, Villa A et al (2006) The H2 MAPT haplotype is associated with familial frontotemporal dementia. Neurobiol Dis 22:357–362

    Google Scholar 

  • Ghidoni R, Benussi L, Glionna M, Franzoni M, Binetti G (2008) Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 71:1235–1239

    PubMed  CAS  Google Scholar 

  • Gijselinck I, Van Broeckhoven C, Cruts M (2008) Granulin mutations associated with frontotemporal lobar degeneration and related disorders: an update. Hum Mutat 29:1373–1386

    PubMed  CAS  Google Scholar 

  • Gitcho MA, Strider J, Carter D, Taylor-Reinwald L, Forman MS, Goate AM et al (2009) VCP mutations causing frontotemporal lobar degeneration disrupt localization of TDP-43 and induce cell death. J Biol Chem 284:12384–12398

    PubMed  CAS  Google Scholar 

  • Goedert M (2004) Tau protein and neurodegeneration. Semin Cell Dev Biol 15:45–49

    PubMed  CAS  Google Scholar 

  • Goedert M (2005) Tau gene mutations and their effects. Mov Disord 20(Suppl 12):S45–S52

    PubMed  Google Scholar 

  • Goedert M, Jakes R (2005) Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 1739:240–250

    PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3:519–526

    PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383:550–553

    PubMed  CAS  Google Scholar 

  • Goedert M, Klug A, Crowther RA (2006) Tau protein, the paired helical filament and Alzheimer’s disease. J Alz Dis 9:195–207

    CAS  Google Scholar 

  • Grisart B, Willatt L, Destrée A, Fryns JP, Rack K, de Ravel T et al (2009) 17q21.31 microduplication patients are characterised by behavioural problems and poor social interaction. J Med Genet 46:524–530

    PubMed  CAS  Google Scholar 

  • Guo A, Tapia L, Bamji SX, Cynader MS, Jia W (2010) Progranulin deficiency leads to enhanced cell vulnerability and TDP-43 translocation in primary neuronal cultures. Brain Res 1366:1–8

    Google Scholar 

  • Gydesen S, Brown JM, Brun A, Chakrabarti L, Gade A, Johannsen P et al (2002) Chromosome 3 linked frontotemporal dementia (FTD-3). Neurology 59:1585–1594

    PubMed  CAS  Google Scholar 

  • Halawani D, LeBlanc AC, Rouiller I, Michnick SW, Servant MJ, Latterich M (2009) Hereditary inclusion body myopathy-linked p97/VCP mutations in the NH2 domain and the D1 ring modulate p97/VCP ATPase activity and D2 ring conformation. Mol Cell Biol 29:4484–4494

    PubMed  CAS  Google Scholar 

  • Hardy J, Singleton A (2009) Genomewide association studies and human disease. N Engl J Med 360:1759–1768

    PubMed  CAS  Google Scholar 

  • Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 41:1088–1093

    PubMed  CAS  Google Scholar 

  • He Z, Bateman A (2003) Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med 81:600–612

    PubMed  CAS  Google Scholar 

  • Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet 43:429–435

    PubMed  CAS  Google Scholar 

  • Hu F, Padukkavidana T, Vægter CB, Brady OA, Zheng Y, Mackenzie IR (2010) Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68:654–667

    PubMed  CAS  Google Scholar 

  • Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    PubMed  CAS  Google Scholar 

  • International HapMap Consortium (2003) The international HapMap project. Nature 426:789–796

    Google Scholar 

  • International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Google Scholar 

  • International HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Google Scholar 

  • Jho YS, Zhulina EB, Kim MW, Pincus PA (2010) Monte Carlo simulations of tau proteins: effect of phosphorylation. Biophys J 99:2387–2397

    PubMed  CAS  Google Scholar 

  • Josephs KA, Ahmed Z, Katsuse O, Parisi JF, Boeve BF, Knopman DS et al (2007) Neuropathologic features of frontotemporal lobar degeneration with ubiquitinpositive inclusions with progranulin gene (PGRN) mutations. J Neuropathol Exp Neurol 66:142–151

    PubMed  CAS  Google Scholar 

  • Ju JS, Weihl CC (2010) Inclusion body myopathy, Paget's disease of the bone and fronto-temporal dementia: a disorder of autophagy. Hum Mol Genet 19(R1):R38–R45

    PubMed  CAS  Google Scholar 

  • Kirchhoff M, Bisgaard AM, Duno M, Hansen FJ, Schwartz M (2007) A 17q21.31 microduplication, reciprocal to the newly described 17q21.31 microdeletion, in a girl with severe psychomotor developmental delay and dysmorphic craniofacial features. Eur J Med Genet 50:256–263

    PubMed  Google Scholar 

  • Kleinberger G, Wils H, Ponsaerts P, Joris G, Timmermans JP, Van Broeckhoven C (2010) Increased caspase activation and decreased TDP-43 solubility in progranulin knockout cortical cultures. J Neurochem 115:735–747

    PubMed  CAS  Google Scholar 

  • Knopman DS, Petersen RC, Edland SD, Cha RH, Rocca WA (2004) The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology 62:506–508

    PubMed  CAS  Google Scholar 

  • Kondo H, Rabouille C, Newman R, Levine TP, Pappin D, Freemont P et al (1997) p47 is a cofactor for p97-mediated membrane fusion. Nature 388:75–78

    PubMed  CAS  Google Scholar 

  • Koolen DA, Vissers LE, Pfundt R, de Leeuw N, Knight SJ, Regan R et al (2006) A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat Genet 38:999–1001

    PubMed  CAS  Google Scholar 

  • Kurz A, Perneczky R (2009) Neurobiology of cognitive disorders. Curr Opin Psychiatry 22:546–551

    PubMed  Google Scholar 

  • Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41:1094–1099

    PubMed  CAS  Google Scholar 

  • Laws SM, Perneczky R, Drzezga A, Diehl-Schmid J, Ibach B, Bäuml J (2007) Association of the tau haplotype H2 with age at onset and functional alterations of glucose utilization in frontotemporal dementia. Am J Psychiatry 164:1577–1584

    PubMed  Google Scholar 

  • Le Ber I, van der Zee J, Hannequin D, Gijselinck I, Campion D, Puel M et al (2007) Progranulin null mutations in both sporadic and familial frontotemporal dementia. Hum Mutat 28:846–855

    PubMed  Google Scholar 

  • Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    PubMed  CAS  Google Scholar 

  • Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB (2007) ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 17:1561–1567

    PubMed  CAS  Google Scholar 

  • Lladó A, Rodríguez-Santiago B, Antonell A, Sánchez-Valle R, Molinuevo JL, Reñé R et al (2007) MAPT gene duplications are not a cause of frontotemporal lobar degeneration. Neurosci Lett 424:61–65

    PubMed  Google Scholar 

  • Mackenzie IR, Rademakers R (2007) The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments. Neurogenetics 8:237–248

    PubMed  CAS  Google Scholar 

  • Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J et al (2009) Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 117:15–18

    PubMed  Google Scholar 

  • Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4

    PubMed  Google Scholar 

  • Malaspina A, Kaushik N, de Belleroche J (2001) Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J Neurochem 77:132–145

    PubMed  CAS  Google Scholar 

  • Malkani R, D'Souza I, Gwinn-Hardy K, Schellenberg GD, Hardy J, Momeni P (2006) A MAPT mutation in a regulatory element upstream of exon 10 causes frontotemporal dementia. Neurobiol Dis 22:401–403

    PubMed  CAS  Google Scholar 

  • Mesulam M, Johnson N, Krefft TA, Gass JM, Cannon AD, Adamson JL et al (2007) Progranulin mutations in primary progressive aphasia. The PPA1 and PPA3 families. Arch Neurol 64:43–47

    PubMed  Google Scholar 

  • Momeni P, Rogaeva E, Van Deerlin V, Yuan W, Grafman J, Tierney M et al (2006a) Genetic variability in CHMP2B and frontotemporal dementia. Neurodegener Dis 3:129–133

    PubMed  CAS  Google Scholar 

  • Momeni P, Bell J, Duckworth J, Hutton M, Mann D, Brown SP et al (2006b) Sequence analysis of all identified open reading frames on the frontal temporal dementia haplotype on chromosome 3 fails to identify unique coding variants except in CHMP2B. Neurosci Lett 410:77–79

    PubMed  CAS  Google Scholar 

  • Momeni P, Schymick J, Jain S, Cookson MR, Cairns NJ, Greggio E et al (2006c) Analysis of IFT74 as a candidate gene for chromosome 9p-linked ALS-FTD. BMC Neurol 6:44

    PubMed  Google Scholar 

  • Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426

    PubMed  CAS  Google Scholar 

  • Mukherjee O, Pastor P, Cairns NJ, Chakraverty S, Kauwe JS, Shears S et al (2006) HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions caused by a missense mutation in the signal peptide of progranulin. Ann Neurol 60:314–322

    PubMed  CAS  Google Scholar 

  • Mukherjee O, Kauwe JS, Mayo K, Morris JC, Goate AM (2007) Haplotype-based association analysis of the MAPT locus in late onset Alzheimer's disease. BMC Genet 8:3

    PubMed  Google Scholar 

  • Mukherjee O, Wang J, Gitcho M, Chakraverty S, Taylor-Reinwald L, Shears S (2008) Molecular characterization of novel progranulin (GRN) mutations in frontotemporal dementia. Hum Mutat 29:512–521

    PubMed  CAS  Google Scholar 

  • Myers AJ, Gibbs JR, Webster JA, Rohrer K, Zhao A, Marlowe L et al (2007a) A survey of genetic human cortical gene expression. Nat Genet 39:1494–1499

    PubMed  CAS  Google Scholar 

  • Myers AJ, Pittman AM, Zhao AS, Rohrer K, Kaleem M, Marlowe L (2007b) The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol Dis 25:561–570

    PubMed  CAS  Google Scholar 

  • Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet 43:436–441

    PubMed  CAS  Google Scholar 

  • Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M (2011) Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377:641–649

    PubMed  Google Scholar 

  • Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554

    PubMed  CAS  Google Scholar 

  • Neumann M, Kwong LK, Truax AC, Vanmassenhove B, Kretzschmar HA, Van Deerlin VM et al (2007) TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. J Neuropathol Exp Neurol 66:177–183

    PubMed  CAS  Google Scholar 

  • Parkinson N, Ince PG, Smith MO, Highley R, Skibinski G, Andersen PM et al (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67:1074–1077

    PubMed  CAS  Google Scholar 

  • Pickering-Brown SM, Rollinson S, Du Plessis D, Morrison KE, Varma A, Richardson AM et al (2008) Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: comparison with patients with MAPT and no known mutations. Brain 131:721–1731

    PubMed  Google Scholar 

  • Pittman AM, Myers AJ, Duckworth J, Bryden L, Hanson M, Abou-Sleiman P et al (2004) The structure of the tau haplotype in controls and in progressive supranuclear palsy. Hum Mol Genet 13:1267–1274

    PubMed  CAS  Google Scholar 

  • Pittman AM, Myers AJ, Abou-Sleiman P, Fung HC, Kaleem M, Marlowe L (2005) Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration. J Med Genet 42:837–846

    PubMed  CAS  Google Scholar 

  • Poksay KS, Madden DT, Peter AK, Niazi K, Banwait S, Crippen D et al (2011) Valosin-containing protein gene mutations: cellular phenotypes relevant to neurodegeneration. J Mol Neurosci 44:91–102

    PubMed  CAS  Google Scholar 

  • Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L et al (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43:815–825

    PubMed  CAS  Google Scholar 

  • Rabinovich E, Kerem A, Fröhlich KU, Diamant N, Bar-Nun S (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626–634

    PubMed  CAS  Google Scholar 

  • Rabouille C, Kondo H, Newman R, Hui N, Freemont P, Warren G (1998) Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92:603–610

    PubMed  CAS  Google Scholar 

  • Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621

    PubMed  CAS  Google Scholar 

  • Rizzu P, van Mil SE, Anar B, Rosso SM, Donker Kaat L, Heutink P et al (2006) CHMP2B mutations are not a cause of dementia in Dutch patients with familial and sporadic frontotemporal dementia. Am J Med Genet B Neuropsychiatr Genet 141B:944–946

    PubMed  CAS  Google Scholar 

  • Rohrer JD, Guerreiro R, Vandrovcova J, Uphill J, Reiman D, Beck J et al (2009) The heritability and genetics of frontotemporal lobar degeneration. Neurology 73:1451–1456

    PubMed  CAS  Google Scholar 

  • Rohrer JD, Ridgway GR, Modat M, Ourselin S, Mead S, Fox NC et al (2010) Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. NeuroImage 53:1070–1076

    PubMed  CAS  Google Scholar 

  • Rollinson S, Mead S, Snowden J, Richardson A, Rohrer J, Halliwell N et al (2011) Frontotemporal lobar degeneration genome wide association study replication confirms a risk locus shared with amyotrophic lateral sclerosis. Neurobiol Aging 32:758.e1–7

    Google Scholar 

  • Rovelet-Lecrux A, Deramecourt V, Legallic S, Maurage CA, Le Ber I, Brice A et al (2008) Deletion of the progranulin gene in patients with frontotemporal lobar degeneration or Parkinson disease. Neurobiol Dis 31:41–45

    PubMed  CAS  Google Scholar 

  • Rovelet-Lecrux A, Lecourtois M, Thomas-Anterion C, Le Ber I, Brice A, Frebourg T (2009) Partial deletion of the MAPT gene: a novel mechanism of FTDP-17. Hum Mutat 30:E591–E602

    PubMed  Google Scholar 

  • Rovelet-Lecrux A, Hannequin D, Guillin O, Legallic S, Jurici S, Wallon D et al (2010) Frontotemporal dementia phenotype associated with MAPT gene duplication. J Alzheimers Dis 21:897–902

    PubMed  CAS  Google Scholar 

  • Schofield EC, Halliday GM, Kwok J, Loy C, Double KL, Hodges JR (2010) Low serum progranulin predicts the presence of mutations: a prospective study. J Alzheimers Dis 22:981–984

    PubMed  CAS  Google Scholar 

  • Seelaar H, Rohrer JD, Pijnenburg YA, Fox NC, van Swieten JC (2011) Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 82:476–486

    PubMed  Google Scholar 

  • Shankaran SS, Capell A, Hruscha AT, Fellerer K, Neumann M, Schmid B et al (2008) Missense mutations in the progranulin gene linked to frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions reduce progranulin production and secretion. J Biol Chem 283:1744–1753

    PubMed  CAS  Google Scholar 

  • Shaw-Smith C, Pittman AM, Willatt L, Martin H, Rickman L, Gribble S et al (2006) Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat Genet 38:1032–1037

    PubMed  CAS  Google Scholar 

  • Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41:1308–1312

    Google Scholar 

  • Singleton AB, Hardy J, Traynor BJ, Houlden H (2010) Towards a complete resolution of the genetic architecture of disease. Trends Genet 26:438–442

    PubMed  CAS  Google Scholar 

  • Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, Hummerich H et al (2005) Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet 37:806–808

    PubMed  CAS  Google Scholar 

  • Skoglund L, Ingvast S, Matsui T, Freeman SH, Frosch MP, Brundin R et al (2009) No evidence of PGRN or MAPT gene dosage alterations in a collection of patients with frontotemporal lobar degeneration. Dement Geriatr Cogn Disord 28:471–475

    PubMed  CAS  Google Scholar 

  • Sleegers K, Brouwers N, Van Damme P, Engelborghs S, Gijselinck I, van der Zee J et al (2009) Serum biomarker for progranulin-associated frontotemporal lobar degeneration. Ann Neurol 65:603–609

    PubMed  CAS  Google Scholar 

  • Spillantini MG, Goedert M, Crowther RA, Murrell JR, Farlow MR, Ghetti B (1997) Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc Natl Acad Sci U S A 94:4113–4118

    PubMed  CAS  Google Scholar 

  • Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 95:7737–7741

    PubMed  CAS  Google Scholar 

  • Sugita S, Sudhof TC (2000) Specificity of Ca2+ dependent protein interactions mediated by the C2A domains of synaptotagmins. Biochemistry 39:2940–2949

    PubMed  CAS  Google Scholar 

  • Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY et al (2011) The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332:478–484

    PubMed  CAS  Google Scholar 

  • Urwin H, Ghazi-Noori S, Collinge J, Isaacs A (2009) The role of CHMP2B in frontotemporal dementia. Biochem Soc Trans 37:208–212

    PubMed  CAS  Google Scholar 

  • Urwin H, Authier A, Nielsen JE, Metcalf D, Powell C, Froud K et al (2010) Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum Mol Genet 19:2228–2238

    PubMed  CAS  Google Scholar 

  • Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR et al (2010) Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42:234–239

    PubMed  Google Scholar 

  • van der Zee J, Le Ber I, Maurer-Stroh S, Engelborghs S, Gijselinck I, Camuzat A et al (2007) Mutations other than null mutations producing a pathogenic loss of progranulin in frontotemporal dementia. Hum Mutat 28:416

    PubMed  Google Scholar 

  • van der Zee J, Urwin H, Engelborghs S, Bruyland M, Vandenberghe R, Dermaut B et al (2008) CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Hum Mol Genet 17:313–322

    PubMed  Google Scholar 

  • van der Zee J, Van Langenhove T, Kleinberger G, Sleegers K, Engelborghs S, Vandenberghe R et al (2011) TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain 134:808–815

    Google Scholar 

  • van Swieten JC, Heutink P (2008) Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol 7:965–974

    PubMed  Google Scholar 

  • van Swieten J, Spillantini MG (2007) Hereditary frontotemporal dementia caused by TAU gene mutations. Brain Pathol 17:63–73

    PubMed  Google Scholar 

  • Vandrovcova J, Anaya F, Kay V, Lees A, Hardy J, de Silva R (2010) Disentangling the role of the tau gene locus in sporadic tauopathies. Curr Alzheimer Res 7:726–734

    PubMed  CAS  Google Scholar 

  • Vass R, Ashbridge E, Geser F, Hu WT, Grossman M, Clay-Falcone D et al (2011) Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis. Acta Neuropathol 121:373–380

    PubMed  Google Scholar 

  • Wang Q, Song C, Li CC (2004) Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol 146:44–57

    PubMed  CAS  Google Scholar 

  • Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381

    PubMed  CAS  Google Scholar 

  • Weihl CC, Dalal S, Pestronk A, Hanson PI (2006) Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum Mol Genet 15:189–199

    PubMed  CAS  Google Scholar 

  • Weihl CC, Pestronk A, Kimonis VE (2009) Valosin-containing protein disease: inclusion body myopathy with Paget's disease of the bone and fronto-temporal dementia. Neuromuscul Disord 19:308–315

    PubMed  Google Scholar 

  • Williams RL, Urbé S (2007) The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8:355–368

    PubMed  CAS  Google Scholar 

  • Zhang YJ, Xu Y, Dickey CD, Buratti E, Baralle F, Bailey R et al (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27:10530–10534

    PubMed  CAS  Google Scholar 

  • Zody MC, Jiang Z, Fung HC, Antonacci F, Hillier LW, Cardone MF et al (2008) Evolutionary toggling of the MAPT 17q21.31 inversion region. Nat Genet 40:1076–1083

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, R., Hardy, J. & Momeni, P. Frontotemporal Dementia: From Mendelian Genetics Towards Genome Wide Association Studies. J Mol Neurosci 45, 500–515 (2011). https://doi.org/10.1007/s12031-011-9635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9635-y

Keywords

Navigation