Skip to main content

Genetic Risk Factors for Sporadic Frontotemporal Dementia

  • Chapter
  • First Online:
Neurodegenerative Diseases

Abstract

Frontotemporal dementia (FTD) is a complex multifactorial disorder characterized by heterogeneous clinical, pathological and genetic features.

FTD is subdivided in familial and sporadic on the basis of the form of inheritance: familial (or Mendelian) cases are those defined by a family history of FTD or closely related neurodegenerative disorders, whilst sporadic cases are those where a family history is not evident. Families are genetically studied to identify genes or genetic markers segregating with (and strongly contributing to) disease through strategies that developed from positional cloning, linkage studies to more recently family-focused whole exome sequencing (WES) approaches. The study of the idiopathic cases is less straightforward: here, besides screening the known candidate (Mendelian) genes (that generally are extremely rare in sporadic cases), the currently most cost-effective strategy is to perform genome-wide association studies (GWAS) to highlight risk-loci. These then need to be further genetically and functionally characterize through, for example, targeted re-sequencing and expression quantitative trait loci (eQTL), to name a few methods.

This chapter focuses on the current status of our genetic understanding of sporadic FTD thanks to the GWAS type of approach. This is followed by conclusive critical remarks on the ways ahead, driven by ever-advancing technologies and integrative strategies, for the dissection of complex disorders, including FTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer’s disease. Arch Med Res. 2012;43(8):600–8.

    Article  PubMed  Google Scholar 

  2. Prince M, et al. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63–75 e2.

    Article  PubMed  Google Scholar 

  3. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th Edition: DSM-5. 5th ed. Arlington: American Psychiatric Publishing; 2013.

    Google Scholar 

  4. Sabbagh MN, et al. Increasing precision of clinical diagnosis of Alzheimer’s disease using a combined algorithm incorporating clinical and novel biomarker data. Neurol Ther. 2017;6(Suppl 1):83–95.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  6. Al-Chalabi A, van den Berg LH, Veldink J. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol. 2017;13(2):96–104.

    Article  CAS  PubMed  Google Scholar 

  7. Chatterjee N, Shi J, Garcia-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. 2016;17(7):392–406.

    Article  CAS  PubMed  Google Scholar 

  8. Eilbeck K, Quinlan A, Yandell M. Settling the score: variant prioritization and Mendelian disease. Nat Rev Genet. 2017;18(10):599–612.

    Article  CAS  PubMed  Google Scholar 

  9. Organization, W.H. Dementia: a public health priority. Manila: WHO Regional Office for the Western Pacific; 2012.

    Google Scholar 

  10. Riedl L, et al. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatr Dis Treat. 2014;10:297–310.

    PubMed  PubMed Central  Google Scholar 

  11. Wimo A, et al. The worldwide economic impact of dementia 2010. Alzheimers Dement. 2013;9(1):1–11 e3.

    Article  PubMed  Google Scholar 

  12. Seelaar H, et al. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry. 2011;82(5):476–86.

    Article  PubMed  Google Scholar 

  13. Snowden JS, Neary D, Mann DM. Frontotemporal dementia. Br J Psychiatry. 2002;180:140–3.

    Article  PubMed  Google Scholar 

  14. Ratnavalli E, et al. The prevalence of frontotemporal dementia. Neurology. 2002;58(11):1615–21.

    Article  CAS  PubMed  Google Scholar 

  15. Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs. 2010;24(5):375–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Degeneration, T.A.f.F. 2013. http://www.theaftd.org/frontotemporal-degeneration/ftd-overview.

  17. Neary D, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):1546–54.

    Article  CAS  PubMed  Google Scholar 

  18. Gorno-Tempini ML, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rohrer JD, Warren JD. Phenotypic signatures of genetic frontotemporal dementia. Curr Opin Neurol. 2011;24(6):542–9.

    Article  PubMed  Google Scholar 

  20. Rascovsky K, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Josephs KA. Frontotemporal dementia and related disorders: deciphering the enigma. Ann Neurol. 2008;64(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  22. Kurz A, Perneczky R. Neurobiology of cognitive disorders. Curr Opin Psychiatry. 2009;22(6):546–51.

    Article  PubMed  Google Scholar 

  23. Halliday G, et al. Mechanisms of disease in frontotemporal lobar degeneration: gain of function versus loss of function effects. Acta Neuropathol. 2012;124(3):373–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mackenzie IR, Neumann M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J Neurochem. 2016;138(Suppl 1):54–70.

    Article  CAS  PubMed  Google Scholar 

  25. DeJesus-Hernandez M, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Zee J, et al. A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat. 2013;34(2):363–73.

    Article  PubMed  CAS  Google Scholar 

  27. Brown J, et al. Familial non-specific dementia maps to chromosome 3. Hum Mol Genet. 1995;4(9):1625–8.

    Article  CAS  PubMed  Google Scholar 

  28. Skibinski G, et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 2005;37(8):806–8.

    Article  CAS  PubMed  Google Scholar 

  29. Weihl CC, Pestronk A, Kimonis VE. Valosin-containing protein disease: inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia. Neuromuscul Disord. 2009;19(5):308–15.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Le Ber I, et al. SQSTM1 mutations in French patients with frontotemporal dementia or frontotemporal dementia with amyotrophic lateral sclerosis. JAMA Neurol. 2013;70(11):1403–10.

    PubMed  PubMed Central  Google Scholar 

  31. Synofzik M, et al. Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype. Neurobiol Aging. 2012;33(12):2949 e13–7.

    Article  CAS  Google Scholar 

  32. Momeni P, et al. Analysis of IFT74 as a candidate gene for chromosome 9p-linked ALS-FTD. BMC Neurol. 2006;6:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pottier C, et al. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 2015;130(1):77–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bannwarth S, et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain. 2014;137(Pt 8):2329–45.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Freischmidt A, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015;18(5):631–6.

    Article  CAS  PubMed  Google Scholar 

  36. Gijselinck I, et al. Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology. 2015;85(24):2116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mackenzie IR, et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron. 2017;95(4):808–816 e9.

    Article  CAS  PubMed  Google Scholar 

  38. Coppola G, et al. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer’s diseases. Hum Mol Genet. 2012;21(15):3500–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin SC, et al. Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer’s disease Ibero-American cohort. Alzheimers Res Ther. 2012;4(4):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kouri N, et al. Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathol. 2014;127(2):271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Momeni P, et al. Clinical and pathological features of an Alzheimer’s disease patient with the MAPT Delta K280 mutation. Neurobiol Aging. 2009;30(3):388–93.

    Article  CAS  PubMed  Google Scholar 

  42. Pastor P, et al. Familial atypical progressive supranuclear palsy associated with homozigosity for the delN296 mutation in the tau gene. Ann Neurol. 2001;49(2):263–7.

    Article  CAS  PubMed  Google Scholar 

  43. Poorkaj P, et al. An R5L tau mutation in a subject with a progressive supranuclear palsy phenotype. Ann Neurol. 2002;52(4):511–6.

    Article  PubMed  Google Scholar 

  44. Rohrer JD, et al. Novel L284R MAPT mutation in a family with an autosomal dominant progressive supranuclear palsy syndrome. Neurodegener Dis. 2011;8(3):149–52.

    Article  CAS  PubMed  Google Scholar 

  45. Ros R, et al. A new mutation of the tau gene, G303V, in early-onset familial progressive supranuclear palsy. Arch Neurol. 2005;62(9):1444–50.

    Article  PubMed  Google Scholar 

  46. Sala Frigerio C, et al. On the identification of low allele frequency mosaic mutations in the brains of Alzheimer’s disease patients. Alzheimers Dement. 2015;11(11):1265–76.

    Article  PubMed  Google Scholar 

  47. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med. 2016;18(5):421–30.

    Article  PubMed  Google Scholar 

  48. Brouwers N, et al. Alzheimer and Parkinson diagnoses in progranulin null mutation carriers in an extended founder family. Arch Neurol. 2007;64(10):1436–46.

    Article  PubMed  Google Scholar 

  49. Brouwers N, et al. Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease. Neurology. 2008;71(9):656–64.

    Article  CAS  PubMed  Google Scholar 

  50. Coppola C, et al. A progranulin mutation associated with cortico-basal syndrome in an Italian family expressing different phenotypes of fronto-temporal lobar degeneration. Neurol Sci. 2012;33(1):93–7.

    Article  PubMed  Google Scholar 

  51. Perry DC, et al. Progranulin mutations as risk factors for Alzheimer disease. JAMA Neurol. 2013;70(6):774–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Redaelli V, et al. Alzheimer neuropathology without frontotemporal lobar degeneration hallmarks (TAR DNA-binding protein 43 inclusions) in missense progranulin mutation Cys139Arg. Brain Pathol. 2018;28(1):72–6.

    Google Scholar 

  53. Spina S, et al. Corticobasal syndrome associated with the A9D Progranulin mutation. J Neuropathol Exp Neurol. 2007;66(10):892–900.

    Article  CAS  PubMed  Google Scholar 

  54. Parkinson N, et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology. 2006;67(6):1074–7.

    Article  CAS  PubMed  Google Scholar 

  55. van der Zee J, et al. CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Hum Mol Genet. 2008;17(2):313–22.

    Article  PubMed  CAS  Google Scholar 

  56. Cooper-Knock J, Shaw PJ, Kirby J. The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathol. 2014;127(3):333–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ferrari R, et al. Screening for C9ORF72 repeat expansion in FTLD. Neurobiol Aging. 2012;33(8):1850 e1–11.

    Article  CAS  Google Scholar 

  58. Ferrari R, Thumma A, Momeni P. Molecular genetics of frontotemporal dementia. In: eLS. Chichester: Wiley; 2013.

    Google Scholar 

  59. Galimberti D, et al. Incomplete penetrance of the C9ORF72 hexanucleotide repeat expansions: frequency in a cohort of geriatric non-demented subjects. J Alzheimers Dis. 2014;39(1):19–22.

    CAS  PubMed  Google Scholar 

  60. Hensman Moss DJ, et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology. 2014;82(4):292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lindquist SG, et al. Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease. Clin Genet. 2013;83(3):279–83.

    Article  CAS  PubMed  Google Scholar 

  62. Majounie E, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 2012;11(4):323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Simon-Sanchez J, et al. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain. 2012;135(Pt 3):723–35.

    Article  PubMed  Google Scholar 

  64. Smith BN, et al. The C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and has a single founder. Eur J Hum Genet. 2013;21(1):102–8.

    Article  CAS  PubMed  Google Scholar 

  65. Watts GD, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36(4):377–81.

    Article  CAS  PubMed  Google Scholar 

  66. Pottier C, et al. Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem. 2016;138(Suppl 1):32–53.

    Article  CAS  PubMed  Google Scholar 

  67. Borroni B, et al. TARDBP mutations in frontotemporal lobar degeneration: frequency, clinical features, and disease course. Rejuvenation Res. 2010;13(5):509–17.

    Article  CAS  PubMed  Google Scholar 

  68. Huey ED, et al. FUS and TDP43 genetic variability in FTD and CBS. Neurobiol Aging. 2012;33(5):1016 e9–17.

    Article  CAS  Google Scholar 

  69. Ferrari R, Hardy J, Momeni P. Frontotemporal dementia: from Mendelian genetics towards genome wide association studies. J Mol Neurosci. 2011;45(3):500–15.

    Article  CAS  PubMed  Google Scholar 

  70. Hardy J, Rogaeva E. Motor neuron disease and frontotemporal dementia: sometimes related, sometimes not. Exp Neurol. 2014;262(Pt B):75–83.

    Article  CAS  PubMed  Google Scholar 

  71. Turner MR, et al. Genetic screening in sporadic ALS and FTD. J Neurol Neurosurg Psychiatry. 2017;88(12):1042–4.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Takada LT. The genetics of monogenic frontotemporal dementia. Dement Neuropsychol. 2015;9(3):219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Manolio TA, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alonso N, Lucas G, Hysi P. Big data challenges in bone research: genome-wide association studies and next-generation sequencing. Bonekey Rep. 2015;4:635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sham PC, Purcell SM. Statistical power and significance testing in large-scale genetic studies. Nat Rev Genet. 2014;15(5):335–46.

    Article  CAS  PubMed  Google Scholar 

  76. Johnson JL, Abecasis GR. GAS power calculator: web-based power calculator for genetic association studies. BioRxiv; 2017.

    Google Scholar 

  77. Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest. 2008;118(5):1590–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Article  CAS  Google Scholar 

  79. Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA. 2008;299(11):1335–44.

    Article  CAS  PubMed  Google Scholar 

  80. Menzel S, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet. 2007;39(10):1197–9.

    Article  CAS  PubMed  Google Scholar 

  81. Uda M, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A. 2008;105(5):1620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jostins L, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bulik-Sullivan B, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47(11):1236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eichler EE, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11(6):446–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang J, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42(7):565–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Londin E, et al. Use of linkage analysis, genome-wide association studies, and next-generation sequencing in the identification of disease-causing mutations. Methods Mol Biol. 2013;1015:127–46.

    Article  CAS  PubMed  Google Scholar 

  87. Harrow J, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22(9):1760–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Venter JC, Smith HO, Adams MD. The sequence of the human genome. Clin Chem. 2015;61(9):1207–8.

    Article  CAS  PubMed  Google Scholar 

  89. Gusella JF, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983;306(5940):234–8.

    Article  CAS  PubMed  Google Scholar 

  90. Riordan JR, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–73.

    Article  CAS  PubMed  Google Scholar 

  91. Rao AT, Degnan AJ, Levy LM. Genetics of Alzheimer Disease. AJNR Am J Neuroradiol. 2014;35:457–8.

    Article  CAS  PubMed  Google Scholar 

  92. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. 2013;Chapter 22:Unit 22.1.

    Google Scholar 

  94. van Dijk EL, et al. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418–26.

    Article  PubMed  CAS  Google Scholar 

  95. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  96. International HapMap Consortium. The International HapMap Project. Nature. 2003;426(6968):789–96.

    Article  CAS  Google Scholar 

  97. http://www.internationalgenome.org/.

  98. Hardy J, Singleton A. Genomewide association studies and human disease. N Engl J Med. 2009;360(17):1759–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Van Deerlin VM, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet. 2010;42(3):234–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ferrari R, et al. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol. 2014;13(7):686–99.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ferrari R, et al. A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia. Neurobiol Aging. 2015;36(10):2904 e13–26.

    Article  CAS  Google Scholar 

  102. Finch N, et al. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology. 2011;76(5):467–74.

    Article  CAS  PubMed  Google Scholar 

  103. Cruchaga C, et al. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch Neurol. 2011;68(5):581–6.

    Article  PubMed  PubMed Central  Google Scholar 

  104. van der Zee J, et al. TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain. 2011;134(Pt 3):808–15.

    PubMed  PubMed Central  Google Scholar 

  105. Rollinson S, et al. Frontotemporal lobar degeneration genome wide association study replication confirms a risk locus shared with amyotrophic lateral sclerosis. Neurobiol Aging. 2011;32(4):758 e1–7.

    Google Scholar 

  106. Vass R, et al. Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis. Acta Neuropathol. 2011;121(3):373–80.

    Article  PubMed  Google Scholar 

  107. van Blitterswijk M, et al. TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol. 2014;127(3):397–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Gallagher MD, et al. TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathol. 2014;127(3):407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lattante S, et al. Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions. Neurobiol Aging. 2014;35(11):2658 e1–5.

    Article  CAS  Google Scholar 

  110. Hernandez I, et al. Association of TMEM106B rs1990622 marker and frontotemporal dementia: evidence for a recessive effect and meta-analysis. J Alzheimers Dis. 2015;43(1):325–34.

    CAS  PubMed  Google Scholar 

  111. Yu L, et al. The TMEM106B locus and TDP-43 pathology in older persons without FTLD. Neurology. 2015;84(9):927–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brady OA, et al. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet. 2013;22(4):685–95.

    Article  CAS  PubMed  Google Scholar 

  113. Nicholson AM, et al. TMEM106B p.T185S regulates TMEM106B protein levels: implications for frontotemporal dementia. J Neurochem. 2013;126(6):781–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lang CM, et al. Membrane orientation and subcellular localization of transmembrane protein 106B (TMEM106B), a major risk factor for frontotemporal lobar degeneration. J Biol Chem. 2012;287(23):19355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Busch JI, et al. Expression of TMEM106B, the frontotemporal lobar degeneration-associated protein, in normal and diseased human brain. Acta Neuropathol Commun. 2013;1:36.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Busch JI, et al. Increased expression of the frontotemporal dementia risk factor TMEM106B causes C9orf72-dependent alterations in lysosomes. Hum Mol Genet. 2016;25(13):2681–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Stagi M, et al. Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Mol Cell Neurosci. 2014;61:226–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sardiello M, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009;325(5939):473–7.

    CAS  PubMed  Google Scholar 

  119. Schwenk BM, et al. The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes. EMBO J. 2014;33(5):450–67.

    CAS  PubMed  Google Scholar 

  120. Klein ZA, et al. Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice. Neuron. 2017;95(2):281–296 e6.

    Article  CAS  PubMed  Google Scholar 

  121. Tan CC, et al. Association of frontotemporal dementia GWAS loci with late-onset Alzheimer’s disease in a northern Han Chinese population. J Alzheimers Dis. 2016;52(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  122. Yang X, et al. HLA-DRA/HLA-DRB5 polymorphism affects risk of sporadic ALS and survival in a southwest Chinese cohort. J Neurol Sci. 2017;373:124–8.

    Article  CAS  PubMed  Google Scholar 

  123. Salvi E, et al. Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase. Hypertension. 2012;59(2):248–55.

    Article  CAS  PubMed  Google Scholar 

  124. Jager D, et al. Serological cloning of a melanocyte rab guanosine 5′-triphosphate-binding protein and a chromosome condensation protein from a melanoma complementary DNA library. Cancer Res. 2000;60(13):3584–91.

    CAS  PubMed  Google Scholar 

  125. Bultema JJ, et al. BLOC-2, AP-3, and AP-1 proteins function in concert with Rab38 and Rab32 proteins to mediate protein trafficking to lysosome-related organelles. J Biol Chem. 2012;287(23):19550–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wasmeier C, et al. Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J Cell Biol. 2006;175(2):271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Seto S, Tsujimura K, Koide Y. Rab GTPases regulating phagosome maturation are differentially recruited to mycobacterial phagosomes. Traffic. 2011;12(4):407–20.

    Article  CAS  PubMed  Google Scholar 

  128. Fukuda M. Multiple roles of VARP in endosomal trafficking: rabs, retromer components and R-SNARE VAMP7 meet on VARP. Traffic. 2016;17(7):709–19.

    Article  CAS  PubMed  Google Scholar 

  129. McGeer PL, et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38(8):1285–91.

    Article  CAS  PubMed  Google Scholar 

  130. Valentonyte R, et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet. 2005;37(4):357–64.

    Article  CAS  PubMed  Google Scholar 

  131. Amor S, Woodroofe N. Review series on immune responses in neurodegenerative diseases: innate and adaptive immune responses in neurodegeneration and repair. Immunology. 2014;141(3):287–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Safieh-Garabedian B, Mayasi Y, Saade NE. Targeting neuroinflammation for therapeutic intervention in neurodegenerative pathologies: a role for the peptide analogue of thymulin (PAT). Expert Opin Ther Targets. 2012;16(11):1065–73.

    Article  CAS  PubMed  Google Scholar 

  133. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.

    Article  CAS  PubMed  Google Scholar 

  134. Staples CJ, et al. The centriolar satellite protein Cep131 is important for genome stability. J Cell Sci. 2012;125(Pt 20):4770–9.

    Article  CAS  PubMed  Google Scholar 

  135. Borner GH, et al. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles. J Cell Biol. 2012;197(1):141–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mikami T, et al. Radical fringe negatively modulates Notch signaling in postmitotic neurons of the rat brain. Brain Res Mol Brain Res. 2001;86(1–2):138–44.

    Article  CAS  PubMed  Google Scholar 

  137. Baker SJ, et al. Characterization of an alternatively spliced AATYK mRNA: expression pattern of AATYK in the brain and neuronal cells. Oncogene. 2001;20(9):1015–21.

    Article  CAS  PubMed  Google Scholar 

  138. Takano T, et al. LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. J Neurosci. 2012;32(19):6587–99.

    Article  CAS  PubMed  Google Scholar 

  139. Lamparter D, et al. Fast and rigorous computation of gene and pathway scores from SNP-based summary statistics. PLoS Comput Biol. 2016;12(1):e1004714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. de Leeuw CA, et al. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11(4):e1004219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Marigorta UM, et al. Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn’s disease. Nat Genet. 2017;49:1517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhu Z, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481–7.

    Article  CAS  PubMed  Google Scholar 

  143. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Manzoni C, et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform. 2016.

    Google Scholar 

  145. Furlong LI. Human diseases through the lens of network biology. Trends Genet. 2013;29(3):150–9.

    Article  CAS  PubMed  Google Scholar 

  146. Ferrari R, et al. Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. Mol Neurodegener. 2016;11:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Ferrari R, et al. Weighted protein interaction network analysis of frontotemporal dementia. J Proteome Res. 2017;16(2):999–1013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Ferrari Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrari, R., Manzoni, C., Momeni, P. (2018). Genetic Risk Factors for Sporadic Frontotemporal Dementia. In: Galimberti, D., Scarpini, E. (eds) Neurodegenerative Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72938-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72938-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72937-4

  • Online ISBN: 978-3-319-72938-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics