Skip to main content
Log in

Effects of 4-Aminopyridine on Organelle Movement in Cultured Mouse Dorsal Root Ganglion Neurites

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Aminopyridines, widely used as a K+ channel blocker, are membrane-permeable weak bases and have the ability to form vacuoles in the cytoplasm. The vacuoles originate from acidic organelles such as lysosomes. Here, we investigated the effects of 4-aminopyridine (4-AP) on organelle movement in neurites of cultured mouse dorsal root ganglion (DRG) neurons by using video-enhanced microscopy. Some experiments were carried out using fluorescent dyes for lysosomes and mitochondria and confocal microscopy. Treatment of DRG neurons with 4 mM 4-AP caused Brownian movement of some lysosomes within 5 min. The Brownian movement gradually became rapid and vacuoles were formed around individual lysosomes 10–20 min after the start of treatment. Axonal transport of organelles was inhibited by 4-AP. Lysosomes showing Brownian movement were not transported in longitudinal direction of the neurite and the transport of mitochondria was interrupted by vacuoles. The 4-AP-induced Brownian movement of lysosomes with vacuole formation and inhibition of axonal transport were prevented by the simultaneous treatment with vacuolar H+ ATPase inhibitor bafilomycin A1 or in Cl-free SO 2−4 medium. These results indicate that changes in organelle movement by 4-AP are related to vacuole formation and the vacuolar H+ ATPase and Cl are required for the effects of 4-AP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

4-AP:

4-aminopyridine

DRG:

dorsal root ganglion

PSS:

physiological salt solution

SD:

standard deviation

References

  • Alfonso, A., Cabado, A. G., Vieytes, M. R., & Botana, L. M. (2000). Calcium-pH crosstalks in rat mast cells: Cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation. British Journal of Pharmacology, 130, 1809–1816.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Leefmans, F. J., Gamiño, S. M., Giraldez, F., & Noguerón, I. (1988). Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective microelectrodes. The Journal of Physiology, 406, 225–246.

    CAS  PubMed  Google Scholar 

  • Arai, K., Yasuda, N., Isohashi, F., Okamoto, K., & Ohkuma, S. (2002). Inhibition of weak-base amine-induced lysis of lysosomes by cytosol. Journal of Biochemistry, 132, 529–534.

    CAS  PubMed  Google Scholar 

  • Beyenbach, K. W., & Wieczorek, H. (2006). The V-type H+ ATPase: Molecular structure and function, physiological roles and regulation. The Journal of Experimental Biology, 209, 577–589.

    Article  CAS  PubMed  Google Scholar 

  • Cover, T. L., Reddy, L. Y., & Blaser, M. J. (1993). Effects of ATPase inhibitors on the response of HeLa cells to Helicobacter pylori vacuolating toxin. Infection and Immunity, 61, 1427–1431.

    CAS  PubMed  Google Scholar 

  • Davis, S. G., & Lyerla, T. A. (1997). The effect of lysosomotropic amines on beige mouse cells. Experimental Cell Research, 237, 242–245.

    Article  CAS  PubMed  Google Scholar 

  • Giglione, C., & Gross, J. D. (1995). Anion effects on vesicle acidification in Dictyostelium. Biochemistry and Molecular Biology International, 36, 1057–1065.

    CAS  PubMed  Google Scholar 

  • Henics, T., & Wheatley, D. N. (1997). Vacuolar cytoplasmic phase separation in cultured mammalian cells involves the microfilament network and reduces motional properties of intracellular water. International Journal of Experimental Pathology, 78, 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Henics, T., & Wheatley, D. N. (1999). Cytoplasmic vacuolation, adaptation and cell death: A view on new perspectives and features. Biology of the Cell, 91, 485–498.

    Article  CAS  PubMed  Google Scholar 

  • Hilden, S. A., Johns, C. A., & Madias, N. E. (1988). Cl-dependent ATP-driven H+transport in rabbit renal cortical endosomes. The American Journal of Physiology, 255, F885–F897.

    CAS  PubMed  Google Scholar 

  • Ishihara, Y., Sakurai, T., Kimura, T., & Terakawa, S. (2000). Exocytosis and movement of zymogen granules observed by VEC-DIC microscopy in the pancreatic tissue en bloc. American Journal of physiology. Cell physiology, 279, C1177–C1188.

    CAS  PubMed  Google Scholar 

  • Lamarca, M. V., & Collier, B. (1983). Effects of 4-aminopyridine on the cat superior cervical ganglion. The Journal of Pharmacology and Experimental Therapeutics, 226, 249–257.

    CAS  PubMed  Google Scholar 

  • Mundorf, M. L., Hochstetler, S. E., & Wightman, R. M. (1999). Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells. Journal of Neurochemistry, 73, 2397–2405.

    Article  CAS  PubMed  Google Scholar 

  • Normann, T. C. (1974). Calcium-dependence of neurosecretion by exocytosis. The Journal of Experimental Biology, 61, 401–409.

    CAS  PubMed  Google Scholar 

  • Ohkuma, S., & Poole, B. (1981). Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. The Journal of Cell Biology, 90, 656–664.

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma, S., & Takano, T. (1997). ATP-dependent lysis of isolated lysosomes by basic substances and acidic ionophores. Cell Structure and Function, 22, 253–268.

    Article  CAS  PubMed  Google Scholar 

  • Seglen, P. O., & Reith, A. (1976). Ammonia inhibition of protein degradation in isolated rat hepatocytes. Quantitative ultrastructural alterations in the lysosomal system. Experimental Cell Research, 100, 276–280.

    Article  CAS  PubMed  Google Scholar 

  • Storm, J. F. (1987). Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. The Journal of Physiology, 385, 733–759.

    CAS  PubMed  Google Scholar 

  • Szente, M., & Baranyi, A. (1987). Mechanism of aminopyridine-induced ictal seizure activity in the cat neocortex. Brain Research, 413, 368–373.

    Article  CAS  PubMed  Google Scholar 

  • Tapia, R., & Sitges, M. (1982). Effect of 4-aminopyridine on transmitter release in synaptosomes. Brain Research, 250, 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Wada, Y., Ohsumi, Y., & Anraku, Y. (1992). Chloride transport of yeast vacuolar membrane vesicles: A study of in vitro vacuolar acidification. Biochimica et Biophysica Acta, 1101, 296–302.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. Q., Xiao, A. Y., Yang, A., LaRose, L., Wei, L., & Yu, S. P. (2003). Block of Na+, K+-ATPase and induction of hybrid death by 4-aminopyridine in cultured cortical neurons. The Journal of pharmacology and experimental therapeutics, 305, 502–506.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W. C. T., Strasser, F. F., & Pomerat, C. M. (1965). Mechanism of drug-induced vacuolation in tissue culture. Experimental Cell Research, 38, 495–506.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a Grand-in-Aid for Scientific Research (C) (KAKENHI 15500245) from the Japan Society for the Promotion of Science (JSPS) to H.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Hiruma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiruma, H., Kawakami, T. Effects of 4-Aminopyridine on Organelle Movement in Cultured Mouse Dorsal Root Ganglion Neurites. J Mol Neurosci 40, 295–302 (2010). https://doi.org/10.1007/s12031-009-9219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9219-2

Keywords

Navigation