Skip to main content

Advertisement

Log in

Neuregulin-1β Regulates the migration of Different Neurochemical Phenotypic Neurons from Organotypically Cultured Dorsal Root Ganglion Explants

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuregulin-1β (NRG-1β) has multiple roles in the development and function in the nervous system and exhibits potent neuroprotective properties. In the present study, organotypically cultured dorsal root ganglion (DRG) explants were used to evaluate the effects of NRG-1β on migration of two major phenotypic classes of DRG neurons. The signaling pathways involved in these effects were also determined. Organotypically cultured DRG explants were exposed to NRG-1β (20 nmol/L), the phosphatidylinositol 3-kinase inhibitor LY294002 (10 μmol/L) plus NRG-1β (20 nmol/L), the extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 (10 μmol/L) plus NRG-1β (20 nmol/L), and LY294002 (10 μmol/L) plus PD98059 (10 μmol/L) plus NRG-1β (20 nmol/L), respectively, for 3 days. The DRG explants were continuously exposed to culture media as a control. After that, all above cultures were processed for detecting the mRNA levels of calcitonin gene-related peptide (CGRP) and neurofilament-200 (NF-200) by real-time PCR analysis. CGRP and NF-200 expression in situ was determined by fluorescent labeling technique. The results showed that NRG-1β elevated the mRNA and protein levels of CGRP and NF-200. NRG-1β also increased the number and the percentage of CGRP-immunoreactive (IR) migrating neurons and NF-200-IR migrating neurons. Inhibitors (LY294002, PD98059) either alone or in combination blocked the effects of NRG-1β. The contribution of NRG-1β on modulating distinct neurochemical phenotypic plasticity of DRG neurons suggested that NRG-1β signaling system might play an important role on the biological effects of primary sensory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CGRP:

Calcitonin gene-related peptide

CNS:

Central nervous system

CNTF:

Cholinergic neurotrophic factor

DMEM/F-12:

Dulbecco’s modified Eagle medium with F-12 supplement

DRG:

Dorsal root ganglion

DRGs:

Dorsal root ganglia

E:

Embryonic day

ERK1/2:

Extracellular signal-regulated protein kinase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

IR:

Immunoreactive

MAP2:

Microtubule-associated protein 2

NC:

Nitrocellulose

NF:

Neurofilament

NF-200:

Neurofilament-200

NRG-1:

Neuregulin-1

NT-3:

Neurotrophin-3

pAkt:

Phosphorylated Akt

PBS:

Phosphate buffer saline

pERK1/2:

Phosphorylated ERK1/2

PI3K:

Phosphatidylinositol 3-kinase

PNS:

Peripheral nervous system

PSN:

Primary sensory neurons

SDH:

Spinal dorsal horn

References

  • Aburto MR, Magariños M, Leon Y, Varela-Nieto I, Sanchez-Calderon H (2012) AKT signaling mediates IGF-I survival actions on otic neural progenitors. PLoS ONE 7:e30790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aso K, Ikeuchi M, Izumi M, Sugimura N, Kato T, Ushida T, Tani T (2014) Nociceptive phenotype of dorsal root ganglia neurons innervating the subchondral bone in rat knee joints. Eur J Pain 18:174–181

    Article  PubMed  CAS  Google Scholar 

  • Audisio C, Mantovani C, Raimondo S, Geuna S, Perroteau I, Terenghi G (2012) Neuregulin1 administration increases axonal elongation in dissociated primary sensory neuron cultures. Exp Cell Res 318:570–577

    Article  PubMed  CAS  Google Scholar 

  • Bare DJ, Becker-Catania SG, DeVries GH (2011) Differential localization of neuregulin-1 type III in the central and peripheral nervous system. Brain Res 1369:10–20

    Article  PubMed  CAS  Google Scholar 

  • Buonanno A, Fischbach GD (2001) Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 11:287–296

    Article  PubMed  CAS  Google Scholar 

  • Calvo M, Zhu N, Grist J, Ma Z, Loeb JA, Bennett DL (2011) Following nerve injury neuregulin-1 drives microglial proliferation and neuropathic pain via the MEK/ERK pathway. Glia 59:554–568

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YJ, Johnson MA, Lieberman MD, Goodchild RE, Schobel S, Lewandowski N, Rosoklija G, Liu RC, Gingrich JA, Small S, Moore H, Dwork AJ, Talmage DA, Role LW (2008) Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci 28:6872–6883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Croslan DR, Schoell MC, Ford GD, Pulliam JV, Gates A, Clement CM, Harris AE, Ford BD (2008) Neuroprotective effects of neuregulin-1 on B35 neuronal cells following ischemia. Brain Res 1210:39–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danigo A, Magy L, Richard L, Sturtz F, Funalot B, Demiot C (2014) A reversible functional sensory neuropathy model. Neurosci Lett 571:39–44

    Article  PubMed  CAS  Google Scholar 

  • Edrey YH, Casper D, Huchon D, Mele J, Gelfond JA, Kristan DM, Nevo E, Buffenstein R (2012) Sustained high levels of neuregulin-1 in the longest-lived rodents; a key determinant of rodent longevity. Aging Cell 11:213–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falls DL (2003) Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284:14–30

    Article  PubMed  CAS  Google Scholar 

  • Fregnan F, Gnavi S, Macrì L, Perroteau I, Gambarotta G (2014) The four isoforms of the tyrosine kinase receptor ErbB4 provide neural progenitor cells with an adhesion preference for the transmembrane type III isoform of the ligand neuregulin 1. NeuroReport 25:233–241

    Article  PubMed  CAS  Google Scholar 

  • Gajda M, Litwin JA, Cichocki T, Timmermans JP, Adriaensen D (2005) Development of sensory innervation in rat tibia: co-localization of CGRP and substance P with growth-associated protein 43 (GAP-43). J Anat 207:135–144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gajendran N, Kapfhammer JP, Lain E, Canepari M, Vogt K, Wisden W, Brenner HR (2009) Neuregulin signaling is dispensable for NMDA- and GABA(A)-receptor expression in the cerebellum in vivo. J Neurosci 29:2404–2413

    Article  PubMed  CAS  Google Scholar 

  • Gambarotta G, Fregnan F, Gnavi S, Perroteau I (2013) Neuregulin 1 role in schwann cell regulation and potential applications to promote peripheral nerve regeneration. Int Rev Neurobiol 108:223–256

    Article  PubMed  CAS  Google Scholar 

  • Goebbels S, Oltrogge JH, Wolfer S, Wieser GL, Nientiedt T, Pieper A, Ruhwedel T, Groszer M, Sereda MW, Nave KA (2012) Genetic disruption of Pten in a novel mouse model of tomaculous neuropathy. EMBO Mol Med 4:486–499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gotow T (2000) Neurofilaments in health and disease. Med Electron Microsc 33:173–199

    Article  PubMed  CAS  Google Scholar 

  • Hall AK, Ai X, Hickman GE, MacPhedran SE, Nduaguba CO, Robertson CP (1997) The generation of neuronal heterogeneity in rat sensory ganglion. J Neurosci 17:2775–2784

    PubMed  CAS  Google Scholar 

  • Hapner SJ, Nielsen KM, Chaverra M, Esper RM, Loeb JA, Lefcort F (2006) NT-3 and CNTF exert dose-dependent, pleiotropic effects on cells in the immature dorsal root ganglion: neuregulin-mediated proliferation of progenitor cells and neuronal differentiation. Dev Biol 297:182–197

    Article  PubMed  CAS  Google Scholar 

  • Heermann S, Schwab MH (2013) Molecular control of Schwann cell migration along peripheral axons: keep moving! Cell Adhes Migr 7:18–22

    Article  Google Scholar 

  • Higa-Nakamine S, Maeda N, Toku S, Yamamoto T, Yingyuenyong M, Kawahara M, Yamamoto H (2012) Selective cleavage of ErbB4 by G-protein-coupled gonadotropin-releasing hormone receptor in cultured hypothalamic neurons. J Cell Physiol 227:2492–2501

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Nishio T, Kawaguchi S, Kurosawa H (2001) Spatiotemporal distribution of GAP-43 in the developing rat spinal cord: a histological and quantitative immunofluorescence study. Neurosci Res 39:347–358

    Article  PubMed  CAS  Google Scholar 

  • Kesavapany S, Li BS, Pant HC (2003) Cyclin-dependent kinase 5 in neurofilament function and regulation. Neurosignals 12:252–264

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Choi IG, Lee BC, Park JB, Kim JH, Jeong JH, Jeong JH, Seo CH (2012) Neuregulin induces CTGF expression in hypertrophic scarring fibroblasts. Mol Cell Biochem 365:181–189

    Article  PubMed  CAS  Google Scholar 

  • Law AJ, Wang Y, Sei Y, O’Donnell P, Piantadosi P, Papaleo F, Straub RE, Huang W, Thomas CJ, Vakkalanka R, Besterman AD, Lipska BK, Hyde TM, Harrison PJ, Kleinman JE, Weinberger DR (2012) Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110δ inhibition as a potential therapeutic strategy. Proc Natl Acad Sci USA 109:12165–12170

    Article  PubMed  PubMed Central  Google Scholar 

  • Li BS, Ma W, Jaffe H, Zheng Y, Takahashi S, Zhang L, Kulkarni AB, Pant HC (2003) Cyclin-dependent kinase-5 is involved in neuregulin-dependent activation of phosphatidylinositol 3-kinase and Akt activity mediating neuronal survival. J Biol Chem 278:35702–35709

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Liu Z, Yang X, Huang F, Ma C, Li Z (2008) Neurotoxicity caused by didanosine on cultured dorsal root ganglion neurons. Cell Biol Toxicol 24:113–121

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Bates R, Yin DM, Shen C, Wang F, Su N, Kirov SA, Luo Y, Wang JZ, Xiong WC, Mei L (2011a) Specific regulation of NRG1 isoform expression by neuronal activity. J Neurosci 31:8491–8501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Gao W, Wang Y, Zhang W, Liu H, Li Z (2011b) Neuregulin-1β regulates outgrowth of neurites and migration of neurofilament 200 neurons from dorsal root ganglial explants in vitro. Peptides 32:1244–1248

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Li H, Zhang W, Li Y, Liu H, Li Z (2011c) Neuregulin-1β prevents Ca(2+) overloading and apoptosis through PI3K/Akt activation in cultured dorsal root ganglion neurons with excitotoxicity induced by glutamate. Cell Mol Neurobiol 31:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Jiang H, Li H, Liu H, Xu X, Li Z (2012) The effects of neuregulin-1β on neuronal phenotypes of primary cultured dorsal root ganglion neurons by activation of PI3K/Akt. Neurosci Lett 511:52–57

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Prior M, He W, Hu X, Tang X, Shen W, Yadav S, Kiryu-Seo S, Miller R, Trapp BD, Yan R (2011) Cleavage of neuregulin-1 by BACE1 or ADAM10 protein produces differential effects on myelination. J Biol Chem 286:23967–23974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masliukov PM, Emanuilov AI, Madalieva LV, Moiseev KY, Bulibin AV, Korzina MB, Porseva VV, Korobkin AA, Smirnova VP (2014) Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia. Neuroscience 256:271–281

    Article  PubMed  CAS  Google Scholar 

  • Murphy SP, Bielby-Clarke K (2008) Neuregulin signaling in neurons depends on ErbB4 interaction with PSD-95. Brain Res 1207:32–35

    Article  PubMed  CAS  Google Scholar 

  • Pertusa M, Morenilla-Palao C, Carteron C, Viana F, Cabedo H (2007) Transcriptional control of cholesterol biosynthesis in Schwann cells by axonal neuregulin 1. J Biol Chem 282:28768–28778

    Article  PubMed  CAS  Google Scholar 

  • Reinhard S, Vela E, Bombara N, Devries GH, Raabe TD (2009) Developmental regulation of Neuregulin1 isoforms and erbB receptor expression in intact rat dorsal root ganglia. Neurochem Res 34:17–22

    Article  PubMed  CAS  Google Scholar 

  • Rogoz K, Andersen HH, Lagerström MC, Kullander K (2014) Multimodal use of calcitonin gene-related peptide and substance P in itch and acute pain uncovered by the elimination of vesicular glutamate transporter 2 from transient receptor potential cation channel subfamily V member 1 neurons. J Neurosci 34:14055–14068

    Article  PubMed  CAS  Google Scholar 

  • Ronchi G, Gambarotta G, Di Scipio F, Salamone P, Sprio AE, Cavallo F, Perroteau I, Berta GN, Geuna S (2013) ErbB2 receptor over-expression improves post-traumatic peripheral nerve regeneration in adult mice. PLoS ONE 8:e56282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rösler TW, Depboylu C, Arias-Carrión O, Wozny W, Carlsson T, Höllerhage M, Oertel WH, Schrattenholz A, Höglinger GU (2011) Biodistribution and brain permeability of the extracellular domain of neuregulin-1-β1. Neuropharmacology 61:1413–1418

    Article  PubMed  CAS  Google Scholar 

  • Shin YK, Jang SY, Park SY, Park JY, Kim JK, Kim JP, Suh DJ, Lee HJ, Park HT (2014) Grb2-associated binder-1 is required for neuregulin-1-induced peripheral nerve myelination. J Neurosci 34:7657–7662

    Article  PubMed  CAS  Google Scholar 

  • Solecki DJ (2012) Sticky situations: recent advances in control of cell adhesion during neuronal migration. Curr Opin Neurobiol 22:791–798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stassart RM, Fledrich R, Velanac V, Brinkmann BG, Schwab MH, Meijer D, Sereda MW, Nave KA (2013) A role for Schwann cell-derived neuregulin-1 in remyelination. Nat Neurosci 16:48–54

    Article  PubMed  CAS  Google Scholar 

  • Stephens HE, Belliveau AC, Gupta JS, Mirkovic S, Kablar B (2005) The role of neurotrophins in the maintenance of the spinal cord motor neurons and the dorsal root ganglia proprioceptive sensory neurons. Int J Dev Neurosci 23:613–620

    Article  PubMed  CAS  Google Scholar 

  • Talmage DA (2008) Mechanisms of neuregulin action. Novartis Found Symp 289:74–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tao F, Li Q, Liu S, Wu H, Skinner J, Hurtado A, Belegu V, Furmanski O, Yang Y, McDonald JW, Johns RA (2013) Role of neuregulin-1/ErbB signaling in stem cell therapy for spinal cord injury-induced chronic neuropathic pain. Stem Cells 31:83–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper RM, Loeb JA, Shrager P, Chao MV, Falls DL, Role L, Salzer JL (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47:681–694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Triolo D, Dina G, Taveggia C, Vaccari I, Porrello E, Rivellini C, Domi T, Marca RL, Cerri F, Bolino A, Quattrini A, Previtali SC (2012) Vimentin regulates peripheral nerve myelination. Development 139:1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Velanac V, Unterbarnscheidt T, Hinrichs W, Gummert MN, Fischer TM, Rossner MJ, Trimarco A, Brivio V, Taveggia C, Willem M, Haass C, Möbius W, Nave KA, Schwab MH (2012) Bace1 processing of NRG1 type III produces a myelin-inducing signal but is not essential for the stimulation of myelination. Glia 60:203–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Liu Z, Liu H, Wan Y, Wang H, Li Z (2009) Neuronal phenotype and tyrosine kinase receptor expression in cocultures of dorsal root ganglion and skeletal muscle cells. Anat Rec 292:107–112

    Article  Google Scholar 

  • Wang L, Li H, Liu Z, Xu X, Wang H, Li Z (2010) Co-administration of monosialoganglioside and skeletal muscle cells on dorsal root ganglion neuronal phenotypes in vitro. Cell Mol Neurobiol 30:43–49

    Article  PubMed  CAS  Google Scholar 

  • Woo RS, Lee JH, Kim HS, Baek CH, Song DY, Suh YH, Baik TK (2012) Neuregulin-1 protects against neurotoxicities induced by Swedish amyloid precursor protein via the ErbB4 receptor. Neuroscience 202:413–423

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Ding N, Xing Z, Zhang W, Liu H, Li Z (2011) Insulin-like growth factor-1 regulates neurite outgrowth and neuronal migration from organotypic cultured dorsal root ganglion. Int J Neurosci 121:101–106

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Jiang H, He Y, Li Y, Liu H (2013) Effects of insulin-like growth factor-1 on neurochemical phenotypes of cultured dorsal root ganglion neurons with excitotoxicity induced by glutamate. Pharmazie 68:63–68.

    PubMed  CAS  Google Scholar 

  • Yabe JT, Wang FS, Chylinski T, Katchmar T, Shea TB (2001) Selective accumulation of the high molecular weight neurofilament subunit within the distal region of growing axonal neurites. Cell Motil Cytoskelet 50:1–12

    Article  CAS  Google Scholar 

  • Yang Q, Du X, Fang Z, Xiong W, Li G, Liao H, Xiao J, Wang G, Li F (2014) Effect of calcitonin gene-related Peptide on the neurogenesis of rat adipose-derived stem cells in vitro. PLoS ONE 9:e86334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yue W, Song L, Fu G, Li Y, Liu H (2013) Neuregulin-1β regulates tyrosine kinase receptor expression in cultured dorsal root ganglion neurons with excitotoxicity induced by glutamate. Regul Pept 180:33–42

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Shandong Provincial Natural Science Foundation of China (No. ZR2013HM082).

Conflict of interest

The authors declare that they have no conflict of interest related to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwen Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, G., Li, H. et al. Neuregulin-1β Regulates the migration of Different Neurochemical Phenotypic Neurons from Organotypically Cultured Dorsal Root Ganglion Explants. Cell Mol Neurobiol 36, 69–81 (2016). https://doi.org/10.1007/s10571-015-0221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0221-7

Keywords

Navigation