Skip to main content

Advertisement

Log in

Variations in Mitochondrial DNA Copy Numbers in MS Brains

  • Brief Communication
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The aim of this study is to determine if there is a pathology-related variation in mitochondrial (mt)DNA copy numbers in brains of patients with multiple sclerosis (MS). Our recent study demonstrated an age-dependent but excluded a MS pathology-related increase in the proportion of cytochrome oxidase (COX)-negative cells and deleted mtDNA molecules in postmortem brain tissue specimens of patients and controls (Blokhin et al., Neuromolecular Medicine, in press, 2008). This corollary study further extends our efforts defining mitochondrial contributions to tissue degeneration associated with inflammatory demyelination. Copy number variations of mtDNA molecules were defined by quantifying the mtDNA ND1 gene copies relative to the invariable nuclear ribosomal 18S gene copies (ND1/r18S) using real-time polymerase chain reaction analyses in laser dissected, COX-positive and COX-negative single neurons and glial cells from frozen postmortem normal-appearing gray (NAGM) and white matter (NAWM) regions and chronic active plaques of MS patients, and gray matter (GM) and white matter (WM) regions of age matched non-neurological disease (NND) controls. ND1/r18S values were correlated with tissue regions, pathology, and age. While the ND1/r18S values were similar in NAWM and plaque-containing specimens of MS patients as well as in NAWM of patients and WM of age-matched NND controls, we found significantly higher mtDNA copy number values in neurons of NAGM than in cells of other MS brain regions. The ND1/r18S values were even higher in NAGM than in GM of age-matched NND controls. An age-related decline in ND1/r18S values was also noted in neurons of both MS patients and NND controls. These observations exclude a change in mtDNA copy numbers in plaques, however, suggest a compensatory replication of mtDNA or mitochondria in the cortex with neuroaxonal loss in MS. The age-related decline in mtDNA copy numbers may explain some features of late-onset MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

References

  • Bender, A., Krishnan, K. J., Morris, C. M., et al. (2006). High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genetics, 38, 507–508. doi:10.1038/ng1769.

    Article  Google Scholar 

  • Blokhin, A., Vyshkina, T., Komoly, S., & Kalman, B. (2008). Lack of mitochondrial DNA deletions in lesions of multiple sclerosis. Neuromolecular Medicine, in press.

  • Bubis, J. J., & Luse, S. A. (1964). An electron microscopic study of experimental allergic encephalomyelitis in the rat. American Journal of Pathology, 44, 299–317.

    PubMed  CAS  Google Scholar 

  • Claudio, L., Raine, C. S., & Brosnan, C. F. (1995). Evidence of persistent blood–brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathologica, 90, 228–238. doi:10.1007/BF00296505.

    Article  PubMed  CAS  Google Scholar 

  • Confavreux, C., Vukusic, S., Moreau, T., & Adeleine, P. (2000). Relapses and progression of disability in multiple sclerosis. The New England Journal of Medicine, 343, 1430–1438. doi:10.1056/NEJM200011163432001.

    Article  PubMed  CAS  Google Scholar 

  • Dutta, R., McDonough, J., Yin, X., et al. (2006). Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Annals of Neurology, 59, 478–489. doi:10.1002/ana.20736.

    Article  PubMed  CAS  Google Scholar 

  • Edgar, J. M., McCulloch, M. C., Thomson, C. E., & Griffiths, I. R. (2008). Distribution of mitochondria along small-diameter myelinated central nervous system axons. Journal of Neuroscience Research, in press.

  • Kalman, B., Laitinen, K., & Komoly, S. (2007). The involvement of mitochondria in the pathogenesis of multiple sclerosis. Journal of Neuroimmunology, 188, 1–12. doi:10.1016/j.jneuroim.2007.03.020.

    Article  PubMed  CAS  Google Scholar 

  • Kraytsberg, Y., Kudryavtseva, E., McKee, A. C., Geula, C., Kowall, N. W., & Khrapko, K. (2006). Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nature Genetics, 38, 507–508. doi:10.1038/ng1778.

    Article  Google Scholar 

  • Kumleh, H. H., Riazi, G. H., Houshmand, M., Sanati, M. H., Gharagozli, K., & Shafa, M. (2006). Complex I deficiency in Persian multiple sclerosis patients. Journal of the Neurological Sciences, 243, 65–69. doi:10.1016/j.jns.2005.11.030.

    Article  PubMed  CAS  Google Scholar 

  • Lu, F., Selak, M., O’Connor, J., Croul, S., Butunoi, C., & Kalman, B. (2000). Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in lesions of multiple sclerosis. Journal of the Neurological Sciences, 177, 95–103. doi:10.1016/S0022–510X(00)00343–9.

    Article  PubMed  CAS  Google Scholar 

  • Mutsaers, S. E., & Carroll, W. M. (1998). Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve. Acta Neuropathologica, 96, 139–143. doi:10.1007/s004010050873.

    Article  PubMed  CAS  Google Scholar 

  • Qi, X., Lewin, A. S., Sun, L., Hauswirth, W. W., & Guy, J. (2006). Mitochondrial protein nitration primes neurodegeneration in experimental autoimmune encephalomyelitis. The Journal of Biological Chemistry, 281, 31950–31962. doi:10.1074/jbc.M603717200.

    Article  PubMed  CAS  Google Scholar 

  • Qi, X., Sun, L., Lewin, A. S., Hauswirth, W. W., & Guy, J. (2007). Long-term suppression of neurodegeneration in chronic experimental optic neuritis: antioxidant gene therapy. Investigative Ophthalmology & Visual Science, 48, 5360–5370. doi:10.1167/iovs.07–0254.

    Article  Google Scholar 

  • Quan-Yu, Z., Jing-Hui, H., Hong-Zeng, L., et al. (2008). Myelin-basic protein-reactive specific CD4(+) and CD8(+) NK lymphocytes induce morphological changes in neuronal cell bodies and myelin sheaths: implications for multiple sclerosis. Archives of Medical Research, 39, 45–51. doi:10.1016/j.arcmed.2007.06.017.

    Article  Google Scholar 

  • Rodríguez Santiago, B., Casademont, J., & Nunes, V. (2001). Is mitochondrial DNA depletion involved in Alzheimer’s disease? European Journal of Human Genetics, 9, 279–285. doi:10.1038/sj.ejhg.5200629.

    Article  PubMed  Google Scholar 

  • Vladimirova, O., Lu, F. M., Shawver, L., & Kalman, B. (1999). The activation of protein kinase C induces higher production of reactive oxygen species by mononuclear cells in patients with multiple sclerosis than in controls. Inflammation Research, 48, 412–416. doi:10.1007/s000110050480.

    Article  PubMed  CAS  Google Scholar 

  • Vladimirova, O., O’Connor, J., Cahill, A., Alder, H., & Kalman, B. (1998). Oxidative damage to DNA in plaques of MS brains. Multiple Sclerosis, 4, 413–418.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Multiple Sclerosis Society (PP1335), Serono and Syracuse VAMC. Brain tissue specimens were obtained from the Multiple Sclerosis Human Neurospecimen Bank, VAMC, Los Angeles, CA, and the Rocky Mountain Multiple Sclerosis Tissue Bank, Denver, CO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette Kalman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blokhin, A., Vyshkina, T., Komoly, S. et al. Variations in Mitochondrial DNA Copy Numbers in MS Brains. J Mol Neurosci 35, 283–287 (2008). https://doi.org/10.1007/s12031-008-9115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9115-1

Keywords

Navigation