Skip to main content
Log in

Involvement of Src Tyrosine Kinases (SFKs) and of Focal Adhesion Kinase (FAK) in the Injurious Mechanism in Rat Primary Neuronal Cultures Exposed to Chemical Ischemia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Src family of kinases (SFKs) and focal adhesion kinase (FAK) are two important cellular signaling components known to act cooperatively in the transduction of death and survival signals. We investigated the involvement of these proteins in the mechanism of the injurious response in rat primary neuronal cultures exposed to an insult composed of chemical ischemia (poisoning with iodoacetic acid; 100 μM, for 150 min) followed by 1 h of incubation in the regular medium, an insult shown before to be associated with generation of reactive oxygen species and with the depletion of adenosine triphisphate. The exposure of the neuronal cultures to the insult resulted in cell injury, assessed by the increased release of cytoplasmic lactate dehydrogenase (LDH) into the culture media, which could be attenuated markedly by the presence of the antioxidant LY 231617. The insult resulted in the decreased level of phosphorylation of the SFKs members Src, Fyn, and Yes at the Src Y416-equivalent activation sites and of the FAK Y397 activation site, degradation of FAK to a p85 fragment, and disassembling of the FAK–SFKs complexes. The inhibition of SFKs was found to be responsible for part of the insult-induced cell damage manifested in increased LDH release. Pervanadate, an inhibitor of the phosphotyrosine phosphatases (PTPs), abrogated the inactivation of SFKs and attenuated cell injury, indicating that insult-induced activation of PTPs is involved in SFKs inhibition and the ensued damage. The inhibition of SFKs and FAK is probably the cause of the disassembling of SFKs–FAK complexes, a process known to be associated with apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abu-Ghazaleh, R., Kabir, J., Jia, H., Lobo, M., & Zachry, I. (2001). Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. The Biochemical Journal, 360, 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, R. T. (2003). The utility of melatonin in reducing cerebral damage resulting from ischemia and reperfusion. Journal of Pineal Research, 34, 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Chiang, G. G., & Sefton, B. M. (2000). Phosphorylation of a Src kinase at the autophosphorylation site in the absence of Src kinase activity. The Journal of Biological Chemistry, 275, 6055–6058.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. S., Kim, H. Y., Chung, J. W., Chun, M. H., Kim, S. Y., Yoon, S. H., et al. (2005). Activation of Src tyrosine kinase in microglia in the rat hippocampus following transient forebrain ischemia. Neuroscience Letters, 380, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Dahmani, S., Rouelle, D., Gressens, P., & Mantz, J. (2005). Effects of Dexmedetomidine on hippocampal focal adhesion kinase tyrosine phosphorylation in physiologic and ischemic conditions. Anesthesiology, 103, 969–977.

    Article  PubMed  CAS  Google Scholar 

  • Dahmani, S., Tesniere, A., Rouelle, D., Desmonts, J. M., & Mantz, J. (2004). Thiopental and isoflurane attenuate the decrease in hippocampal phosphorylated Focal Adhesion Kinase (pp125 FAK) content induced by oxygen–glucose deprivation. British Journal of Anaesthesia, 93, 270–274.

    Article  PubMed  CAS  Google Scholar 

  • Dawn, B., Takano, H., Tang, X. L., et al. (2002). Role of Src protein tyrosine kinases in late preconditioning against myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 283, H549–H556.

    PubMed  CAS  Google Scholar 

  • Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.

    PubMed  CAS  Google Scholar 

  • Gervais, F. G., Thornberry, N. A., Ruffolo, S. C., Nicholson, D. W., & Roy, S. (1998). Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide. The Journal of Biological Chemistry, 273, 17102–17108.

    Article  PubMed  CAS  Google Scholar 

  • Giannoni, E., Buricchi, F., Raugei, G., Ramponi, G., & Chiarugi, P. (2005). Intracellular reactive oxygen species activate src tyrosine kinase during call adhesion and anchorage-dependent cell growth. Molecular and Cellular Biology, 15, 6391–6403.

    Article  Google Scholar 

  • Girault, J. A., Costa, A., Derkinderen, P., Studler, J. M., & Toutant, M. (1999). FAK and PYK2/CAKβ in the nervous system: A link between neuronal activity, plasticity and survival? Trends in Neurosciences, 22, 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Guo, J., Meng, F., Zhang, G., & Zhang, Q. (2003). Free radicals are involved in continuous activation of nonreceptor tyrosine protein kinase c-Src after ischemia/reperfusion in rat hippocampus. Neuroscience Letters, 345, 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, R., Fujimaki, K., Jeong, M. R., Christ, L., & Chuang, D. (2003). Lithium-induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: a role in neuroprotection against N-methyl-D-aspartate receptor-mediated excitotoxicity. FEBS Letters, 538, 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, R., Otani, H., Uchiyama, T., Imamura, H., Cui, J., Maulik, N., et al. (2001). Src tyrosine kinase is the triger but not the mediator of ischemic preconditioning. American Journal of Physiology. Heart and Circulatory Physiology, 281, H1066–H1074.

    PubMed  CAS  Google Scholar 

  • Head, B. P., Patel, H. H., Tsutsumi, Y. M., et al. (2008). Caveolin-1 expression is essential for N-methyl-D-aspartate receptor-mediated Src and extracellular signal-regulated kinase 1/2 activation and protection of primary neurons from ischemic cell death. The FASEB Journal, 22, 828–840.

    Article  PubMed  CAS  Google Scholar 

  • Kelicen, P., Cantuti-Castelvetri, I., Pekiner, C., & Paulson, K. E. (2002). The spin trapping agent PBN stimulates H2O2-induced Erk and Src kinase activity in human neuroblastoma cells. Neurorepor, 13, 1057–1061.

    Article  CAS  Google Scholar 

  • Krieg, T., Qin, Q., McIntosh, E. C., Cohen, M. V., & Downey, J. M. (2002). ACh and adenosine activate PI3-kinase in rabbit hearts through transactivation of receptor tyrosine kinases. American Journal of Physiology. Heart and Circulatory Physiology, 283, H2322–H2330.

    PubMed  CAS  Google Scholar 

  • Lietha, D., Xinming, C., Derek, F. J. C., Yiqun, L., Schaller, M. D., & Eck, M. J. (2007). Structural basis for the autoinhibition of focal adhesion kinase. Cell, 129, 1177–1187.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79, 1431–1568.

    PubMed  CAS  Google Scholar 

  • Ludwig, L. M., Weihrauch, D., Kersten, J. R., Pagel, P. S., & Warltier, D. C. (2004). Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane-induced preconditioning in vivo: potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology, 100, 532–539.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Focal adhesion kinase: In command and control of cell motility. Nature, 6, 56–68.

    CAS  Google Scholar 

  • Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK–Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516–523.

    Article  PubMed  CAS  Google Scholar 

  • Nakka, V. P., Gusain, A., Mehta, S. L., & Raghubir, R. (2008). Molecular mechanisms of apoptosis in cerebral ischemia: Multiple neuroprotective opportunities. Molecular Neurobiology, 37, 7–38.

    Article  PubMed  CAS  Google Scholar 

  • Park, S. S., Eom, Y. W., Kim, E. H., et al. (2004). Involvement of c-Src kinase in the regulation of TGF-b1 induced apoptosis. Oncogene, 23, 6272–6281.

    Article  PubMed  CAS  Google Scholar 

  • Ping, P., Song, C., Zhang, J., et al. (2002). Formation of protein kinase C(epsilon)–Lck signaling modules confers cardioprotection. The Journal of Clinical Investigation, 109, 499–507.

    PubMed  CAS  Google Scholar 

  • Pei, L., Li, Y., Yan, J. Z., Zhang, G. Y., Cui, Z. C., & Zhu, Z. M. (2000). Changes and mechanisms of protein-tyrosine kinase and protein-tyrosine phosphatase activities after brain ischemia/reperfusion. Acta Pharmacologica Sinica, 21, 715–720.

    PubMed  CAS  Google Scholar 

  • Pumiglia, K. M., Lau, L. F., Huang, C. K., Burroughs, S., & Feinstein, M. B. (1992). Activation of signal transduction in platelets by the tyrosine phosphatase inhibitor pervanadate (vanadyl hydroperoxide). The Biochemical Journal, 286(Pt 2), 441–449.

    PubMed  CAS  Google Scholar 

  • Reshef, A., Sperling, O., & Zoref-Shani, E. (2000). The adenosine-induced mechanism for the acquisition of ischemic tolerance in primary rat neuronal cultures. Pharmacology & Therapeutics, 87, 151–159.

    Article  CAS  Google Scholar 

  • Roskoski, R. (2004). Src protein-tyrosine kinase structure and regulation. Biochemical and Biophysical Research Communications, 324, 1155–1164.

    Article  PubMed  CAS  Google Scholar 

  • Roskoski, R. (2005). Src kinase regulation by phosphorylation and dephosphorylation. Biochemical and Biophysical Research Communications, 331, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Sperling, O., Bromberg, Y., Oelsner, H., & Zoref-Shani, E. (2003). Reactive oxygen species play an important role in iodoacetate-induced neurotoxicity in primary rat neuronal cultures and in differentiated PC12 cells. Neuroscience Letters, 351, 137–140.

    Article  PubMed  CAS  Google Scholar 

  • Sun, G., Sharma, A. K., & Budde, R. J. (1998). Autophosphorylation of Src and Yes blocks their inactivation by Csk phosphorylation. Oncogene, 17, 1587–1595.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. J. (2003). A role for Src kinase in the regulation of glutamate release from rat cerebrocortical nerve terminals. Neuroreport, 14, 1519–1522.

    Article  PubMed  CAS  Google Scholar 

  • Wen, L. P., Fahrni, J. A., Troie, S., Guan, J. L., Orth, K., & Rosen, G. D. (1997). Cleavage of focal adhesion kinase by caspases during apoptosis. The Journal of Biological Chemistry, 272, 26056–26061.

    Article  PubMed  CAS  Google Scholar 

  • Zalewska, T., Makarewicz, D., Janik, B., & Ziemka-Nalecz, M. (2005). Neonatal cerebral hypoxia-ischemia: involvement of FAK-dependent pathway. International Journal of Developmental Neuroscience, 23, 657–662.

    Article  PubMed  CAS  Google Scholar 

  • Ziemka-Nalecz, M., & Zalewska, T. (2007). Transient forebrain ischemia effects FAK-coupled signaling in gerbil hippocampus. Neurochemistry International, 51, 405–411.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Benjamin Turkienicz Estate, the Dr. Ziternick and Haia Silva Ziternick Fund, and by a grant from the Adams Super Center for Brain Research, Tel-Aviv University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Zoref-Shani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shani, V., Bromberg, Y., Sperling, O. et al. Involvement of Src Tyrosine Kinases (SFKs) and of Focal Adhesion Kinase (FAK) in the Injurious Mechanism in Rat Primary Neuronal Cultures Exposed to Chemical Ischemia. J Mol Neurosci 37, 50–59 (2009). https://doi.org/10.1007/s12031-008-9113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9113-3

Keywords

Navigation