Skip to main content

Advertisement

Log in

The Role of Vasoactive Intestinal Polypeptide and Pituitary Adenylate Cyclase-Activating Polypeptide in the Neural Pathways Controlling the Lower Urinary Tract

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are expressed in the neural pathways regulating the lower urinary tract. VIP-immunoreactivity (IR) is present in afferent and autonomic efferent neurons innervating the bladder and urethra, whereas PACAP-IR is present primarily in afferent neurons. Exogenously applied VIP relaxes bladder and urethral smooth muscle and excites parasympathetic neurons in bladder ganglia. PACAP relaxes bladder and urethral smooth muscle in some species (pig) but excites the smooth muscle in other species (mouse). Intrathecal administration of VIP in cats with an intact spinal cord suppresses reflex bladder activity, but intrathecal administration of VIP or PACAP in rats enhances bladder activity and suppresses urethral sphincter activity. PACAP has presynaptic facilitatory effects and direct excitatory effects on lumbosacral parasympathetic preganglionic neurons. Chronic spinal cord transection produces an expansion of VIP-IR (cats) and PACAP-IR (rats) in primary afferent axons in the lumbosacral spinal cord and unmasks spinal excitatory effects of VIP on bladder reflexes in cats. Intrathecal administration of PACAP6-38, a PAC1 receptor antagonist, reduces bladder hyperactivity in chronic spinal-cord-injured rats. These observations raise the possibility that VIP or PACAP have a role in the control of normal or abnormal voiding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akasu, T., Gallagher, J. P., Hirai, K., & Shinnick-Gallagher, P. (1986). Vasoactive intestinal polypeptide depolarizations in cat bladder parasympathetic ganglia. Journal of Physiology (London), 374, 457–473.

    CAS  Google Scholar 

  • Alm, P., Alumets, J., Hakanson, R., Owman, O., Sjoberg, N. O., Sundler, F., et al. (1980). Origin and distribution of VIP (vasoactive intestinal polypeptide)-nerves in the genito-urinary tract. Cell and Tissue Research, 205, 337–347.

    PubMed  CAS  Google Scholar 

  • Anand, P., Gibson, S. J., McGregor, G. P., Blank, M. A., Ghatei, M. A., Bacarese-Hamilton, A. J., et al. (1983). A VIP-containing system concentrated in the lumbosacral region of human spinal cord. Nature, 305, 143–145.

    PubMed  CAS  Google Scholar 

  • Andersson, P. O., Andersson, K. E., Fahrenkrug, J., Mattiasson, A., Sjogren, C., & Uvelius, B. (1988). Contents and effects of substance P and vasoactive intestinal polypeptide in the bladder of rats with and without infravesical outflow obstruction. Journal of Urology, 140, 168–172.

    PubMed  CAS  Google Scholar 

  • Andersson, P. O., Fahrenkrug, J., Malmgren, A., & Uvelius, B. (1992). Effects of age and streptozotocin-induced diabetes on contents and effects of substance P and vasoactive intestinal polypeptide in the lower urinary tract of the rat. Acta Physiologica Scandanavia, 144, 361–368.

    Article  CAS  Google Scholar 

  • Andersson, K. E., Mattiasson, A., & Sjögren, C. (1983). Electrically induced relaxation of the noradrenaline contracted isolated urethra from rabbit and man. Journal of Urology, 129, 210–214.

    PubMed  CAS  Google Scholar 

  • Araki, I., & de Groat, W. C. (1996). Unitary excitatory synaptic currents in preganglionic neurons mediated by two distinct groups of interneurons in neonatal rat sacral parasympathetic nucleus. Journal of Neurophysiology, 76, 215–226.

    PubMed  CAS  Google Scholar 

  • Arimura, A. (1992). Pituitary adenylate cyclase activating polypeptide (PACAP): Discovery and current status of research. Regulatory Peptides, 37, 287–303.

    PubMed  CAS  Google Scholar 

  • Arimura, A. (1998). Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Japanese Journal of Physiology, 48, 301–331.

    PubMed  CAS  Google Scholar 

  • Arimura, A., & Shioda, S. (1995). Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: Neuroendocrine and endocrine interaction. Frontiers in Neuroendocrinology, 16, 53–88.

    PubMed  CAS  Google Scholar 

  • Avelino, A., & Cruz, F. (2000). Peptide immunoreactivity and ultrastructure of rat urinary bladder nerve fibers after topical desensitization by capsaicin or resiniferatoxin. Autonomic Neuroscience, 86, 37–46.

    PubMed  CAS  Google Scholar 

  • Barrington, F. J. F. (1925). The effect of lesion of the hind- and mid brain on micturition in the cat. Quarterly Journal of Experimental Physiology, 15, 81–102.

    Google Scholar 

  • Basbaum, A. I., & Glazer, E. J. (1983). Immunoreactive vasoactive intestinal polypeptide is concentrated in the sacral spinal cord: A possible marker for pelvic visceral afferent fibers. Somatosensory Research, 1, 69–82.

    PubMed  CAS  Google Scholar 

  • Blank, M. A., Brown, J. R., Hunter, J. C., Bloom, S. R., & Tyers, M. B. (1986). Effects of VIP and related peptides and Gila monster venom on genitourinary smooth muscle. European Journal of Pharmacology, 132, 155–161.

    PubMed  CAS  Google Scholar 

  • Blok, B. F., van Maarseveen, J. T., & Holstege, G. (1998). Electrical stimulation of the sacral dorsal gray commissure evokes relaxation of the external urethral sphincter in the cat. Neuroscience Letters, 249, 68–70.

    PubMed  CAS  Google Scholar 

  • Braas, K. M., May, V., Harakall, S. A., Hardwick, J. C., & Parsons, R. L. (1998). Pituitary adenylate cyclase-activating polypeptide expression and modulation of neuronal excitability in guinea pig cardiac ganglia. Journal of Neuroscience, 18, 9766–9779.

    PubMed  CAS  Google Scholar 

  • Braas, K. M., May, V., Zvara, P., Nausch, B., Kliment, J., Dunleavy, J. D., et al. (2006). Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. American Journal of Physiology, 290, R951–962.

    PubMed  CAS  Google Scholar 

  • Busacchi, P., Perri, T., Paradisi, R., Oliverio, C., Santini, D., Guerrini, et al. (2004). Abnormalities of somatic peptide-containing nerves supplying the pelvic floor of women with genitourinary prolapse and stress urinary incontinence. Urology, 63, 591–595.

    PubMed  CAS  Google Scholar 

  • Callahan, S. M., & Creed, K. E. (1986). Non-cholinergic neurotransmission and the effects of peptides on the urinary bladder of guinea-pigs and rabbits. The Journal of Physiology, 374, 103–115.

    PubMed  CAS  Google Scholar 

  • Cheng, C. L., & de Groat, W. C. (2004). The role of capsaicin-sensitive afferent fibers in the lower urinary tract dysfunction induced by chronic spinal cord injury in rats. Experimental Neurology, 187, 445–454.

    PubMed  CAS  Google Scholar 

  • Cheng, C. L., Liu, J. C., Chang, S. Y., Ma, C. P., & de Groat, W. C. (1999). Effect of capsaicin on the micturition reflex in normal and chronic spinal cord-injured cats. American Journal of Physiology, 277, R786–R794.

    PubMed  CAS  Google Scholar 

  • Cheng, C. L., Ma, C. P., & Groat, W. C. (1995). Effect of capsaicin on micturition and associated reflexes in chronic spinal rats. Brain Research, 678, 40–48.

    PubMed  CAS  Google Scholar 

  • Crowe, R., Burnstock, G., & Light, J. K. (1988). Spinal cord lesions at different levels affect either the adrenergic or vasoactive intestinal polypeptide-immunoreactive nerves in the human urethra. Journal of Urology, 140, 1412–1414.

    PubMed  CAS  Google Scholar 

  • Crowe, R., Haven, A. J., & Burnstock, G. (1986a). Intramural neurons of the guinea-pig urinary bladder: Histochemical localization of putative neurotransmitters in cultures and newborn animals. Journal of the Autonomic Nervous System, 15, 319–339.

    PubMed  CAS  Google Scholar 

  • Crowe, R., Light, K., Chilton, C. P., & Burnstock, G. (1986b). Vasoactive intestinal polypeptide-, somatostatin- and substance P-immunoreactive nerves in the smooth and striated muscle of the intrinsic external urethral sphincter of patients with spinal cord injury. Journal of Urology, 136, 487–491.

    PubMed  CAS  Google Scholar 

  • Crowe, R., Moss, H. E., Chapple, C. R., Light, J. K., & Burnstock, G. (1991). Patients with lower motor spinal cord lesion: A decrease of vasoactive intestinal polypeptide, calcitonin gene-related peptide and substance P, but not neuropeptide Y and somatostatin-immunoreactive nerves in the detrusor muscle of the bladder. Journal of Urology, 145, 600–604.

    PubMed  CAS  Google Scholar 

  • Crowe, R., Vale, J., Trott, K. R., Soediono, P., Robson, T., & Burnstock, G. (1996). Radiation-induced changes in neuropeptides in the rat urinary bladder. Journal of Urology, 156, 2062–2066.

    PubMed  CAS  Google Scholar 

  • de Groat, W. C. (1975). Nervous control of the urinary bladder of the cat. Brain Research, 87, 201–211.

    PubMed  Google Scholar 

  • de Groat, W. C. (1986). Spinal cord projections and neuropeptides in visceral afferent neurons. Progress in Brain Research, 67, 165–187.

    PubMed  Google Scholar 

  • de Groat, W. C. (1989). Neuropeptides in pelvic afferent pathways. In J. M. Polak (Ed.) Regulatory peptides (pp. 334–361). Basel: Birkhauser.

    Google Scholar 

  • de Groat, W. C., Booth, A. M., & Yoshimura, N. (1993). Neurophysiology of micturition and its modification in animal models of human disease. In C. A. Maggi (Ed.) The autonomic nervous system, vol. 3, nervous control of the urogenital system (pp. 227–290). London: Harwood Academic Publishers.

    Google Scholar 

  • de Groat, W. C., Fraser, M. O., Yoshiyama, M., Smerin, S., Tai, C., Chancellor, et al. (2001). Neural control of the urethra. Scandinavian Journal of Urology and Nephrology, 35, 35–43.

    Google Scholar 

  • de Groat, W. C., Kawatani, M., Hisamitsu, T., Cheng, C.-L., Ma, C.-P., Thor, K., et al. (1990). Mechanisms underlying the recovery of urinary bladder function following spinal cord injury. Journal of the Autonomic Nervous System, 30, S71–S77.

    PubMed  Google Scholar 

  • de Groat, W. C., Nadelhaft, I., Milne, R. J., Booth, A. M., Morgan, C., & Thor, K. (1981). Organization of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine. Journal of the Autonomic Nervous System, 3, 135–160.

    PubMed  Google Scholar 

  • de Groat, W. C., & Ryall, R. W. (1969). Reflexes to sacral preganglionic parasympathetic neurons concerned with micturition in the cat. Journal of Physiology (London), 200, 87–108.

    Google Scholar 

  • de Groat, W. C., & Yoshimura, N. (2006). Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Progress in Brain Research, 152, 59–84.

    PubMed  Google Scholar 

  • Dixon, J. S., Jen, P. Y., & Gosling, J. A. (1997). A double-label immunohistochemical study of intramural ganglia from the human male urinary bladder neck. Journal of Anatomy, 190(Pt 1), 125–134.

    PubMed  CAS  Google Scholar 

  • Drake, M. J., Hedlund, P., Mills, I. W., McCoy, R., McMurray, G., Gardner, B. P., et al. (2000). Structural and functional denervation of human detrusor after spinal cord injury. Laboratory Investigations, 80, 1491–1499.

    CAS  Google Scholar 

  • Fahrenkrug, J., & Hannibal, J. (1998a). PACAP in visceral afferent nerves supplying the rat digestive and urinary tracts. Annals of the New York Academy of Sciences, 865, 542–546.

    PubMed  CAS  Google Scholar 

  • Fahrenkrug, J., & Hannibal, J. (1998b). Pituitary adenylate cyclase activating polypeptide immunoreactivity in capsaicin-sensitive nerve fibres supplying the rat urinary tract. Neuroscience, 83, 1261–1272.

    PubMed  CAS  Google Scholar 

  • Gabella, G., & Davis, C. (1998). Distribution of afferent axons in the bladder of rats. Journal of Neurocytology, 27, 141–155.

    PubMed  CAS  Google Scholar 

  • Gibson, S. J., Polak, J. M., Anand, P., Blank, M. A., Morrison, J. F., Kelly, J. S., et al. (1984). The distribution and origin of VIP in the spinal cord of six mammalian species. Peptides, 5, 201–207.

    PubMed  CAS  Google Scholar 

  • Gu, J., Blank, M. A., Huang, W. M., Islam, K. N., McGregor, G. P., Christofides, N., et al. (1984). Peptide-containing nerves in human urinary bladder. Urology, 24, 353–357.

    PubMed  CAS  Google Scholar 

  • Häbler, H. J., Jänig, W., & Koltzenburg, M. (1990). Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. Journal of Physiology (London), 425, 545–562.

    Google Scholar 

  • Harmar, A. J., Sheward, W. J., Morrison, C. F., Waser, B., Gugger, M., & Reubi, J. C. (2004). Distribution of the VPAC2 receptor in peripheral tissues of the mouse. Endocrinology, 145, 1203–1210.

    PubMed  CAS  Google Scholar 

  • Hashimoto, S., Kigoshi, S., & Muramatsu, I. (1992). Neurogenic responses of urethra isolated from the dog. European Journal of Pharmacology, 213, 117–123.

    PubMed  CAS  Google Scholar 

  • Hashimoto, S., Kigoshi, S., & Muramatsu, I. (1993). Nitric oxide-dependent and -independent neurogenic relaxation of isolated dog urethra. European Journal of Pharmacology, 231, 209–214.

    PubMed  CAS  Google Scholar 

  • Hernández, M., Barahona, M. V., Recio, P., Benedito, S., Martinez, A. C., Rivera, L., et al. (2006a). Neuronal and smooth muscle receptors involved in the PACAP- and VIP-induced relaxations of the pig urinary bladder neck. British Journal of Pharmacology, 149, 100–109.

    PubMed  Google Scholar 

  • Hernández, M., Barahona, M. V., Recio, P., Bustamante, S., Benedito, S., Rivera, L., et al. (2006b). PACAP 38 is involved in the non-adrenergic non-cholinergic inhibitory neurotransmission in the pig urinary bladder neck. Neurourology and Urodynamics, 25, 490–497.

    PubMed  Google Scholar 

  • Herrera, G. M., Braas, K. M., May, V., & Vizzard, M. A. (2006). PACAP enhances mouse urinary bladder contractility and is upregulated in micturition reflex pathways after cystitis. Annals of the New York Academy of Sciences, 1070, 330–336.

    PubMed  CAS  Google Scholar 

  • Hills, J., Meldrum, L. A., Klarskov, P., & Burnstock, G. (1984). A novel non-adrenergic, non-cholinergic nerve-mediated relaxation of the pig bladder neck: An examination of possible neurotransmitter candidates. European Journal of Pharmacology, 99, 287–293.

    PubMed  CAS  Google Scholar 

  • Honda, C. N., Rethelyi, M., & Petrusz, P. (1983). Preferential immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in the sacral spinal cord of the cat: light and electron microscope observations. Journal of Neuroscience, 3, 2183–2196.

    PubMed  CAS  Google Scholar 

  • Hosokawa, H., & Kaseda, M. (1993). Experimental studies on VIP as non-cholinergic and non-adrenergic neurotransmitter in bladder neck and posterior urethra. Nippon Hinyokika Gakkai Zasshi, 84, 440–449.

    PubMed  CAS  Google Scholar 

  • Igawa, Y., Persson, K., Andersson, K.-E., Uvelius, B., & Mattiasson, A. (1993). Facilitatory effect of vasoactive intestinal polypeptide on spinal and peripheral micturition reflex pathways in conscious rats with and without detrusor instability. Journal of Urology, 149, 884–889.

    PubMed  CAS  Google Scholar 

  • Ishizuka, O., Alm, P., Larsson, B., Mattiasson, A., & Andersson, K. E. (1995). Facilitatory effect of pituitary adenylate cyclase activating polypeptide on micturition in normal, conscious rats. Neuroscience, 66, 1009–1014.

    PubMed  CAS  Google Scholar 

  • Jänig, W., & Morrison, J. F. (1986). Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. Progress in Brain Research, 67, 87–114.

    PubMed  Google Scholar 

  • Jen, P. Y., Dixon, J. S., & Gosling, J. A. (1996). Co-localisation of tyrosine hydroxylase, nitric oxide synthase and neuropeptides in neurons of the human postnatal male pelvic ganglia. Journal of the Autonomic Nervous System, 59, 41–50.

    PubMed  CAS  Google Scholar 

  • Jongsma Wallin, H., Petterson, L. M., Verge, V. M., & Danielsen, N. (2003). Effect of anti-nerve growth factor treatment on pituitary adenylate cyclase activating polypeptide expression in adult sensory neurons exposed to adjuvant induced inflammation. Neuroscience, 120, 325–331.

    PubMed  CAS  Google Scholar 

  • Kawatani, M., Erdman, S. L., & de Groat, W. C. (1985a). VIP and substance P in primary afferent pathways to the sacral spinal cord of the cat. Journal of Comparative Neurology, 241, 327–347.

    PubMed  CAS  Google Scholar 

  • Kawatani, M., Lowe, I. P., Nadelhaft, I., Morgan, C., & De Groat, W. C. (1983). Vasoactive intestinal polypeptide in visceral afferent pathways to the sacral spinal cord of the cat. Neuroscience Letters, 42, 311–316.

    PubMed  CAS  Google Scholar 

  • Kawatani, M., Nagel, J., & de Groat, W. C. (1986). Identification of neuropeptides in pelvic and pudendal nerve afferent pathways to the sacral spinal cord of the cat. Journal of Comparative Neurology, 249, 117–132.

    PubMed  CAS  Google Scholar 

  • Kawatani, M., Rutigliano, M., & de Groat, W. C. (1985b). Depolarization and muscarinic excitation induced in a sympathetic ganglion by vasoactive intestinal polypeptide. Science, 229, 879–881.

    PubMed  CAS  Google Scholar 

  • Kawatani, M., Rutigliano, M., & de Groat, W. C. (1985c). Selective facilitatory effect of vasoactive intestinal polypeptide (VIP) on muscarinic firing in vesical ganglia of the cat. Brain Research, 336, 223–234.

    PubMed  CAS  Google Scholar 

  • Kawatani, M., Takeshige, C., & de Groat, W. C. (1990). Central distribution of afferent pathways from the uterus of the cat. Journal of Comparative Neurology, 302, 294–304.

    PubMed  CAS  Google Scholar 

  • Keast, J. R. (2006). Plasticity of pelvic autonomic ganglia and urogenital innervation. International Review of Cytology, 248, 141–208.

    PubMed  CAS  Google Scholar 

  • Keast, J. R., & de Groat, W. C. (1989). Immunohistochemical characterization of pelvic neurons which project to the bladder, colon, or penis in rats. Journal of Comparative Neurology, 288, 387–400.

    PubMed  CAS  Google Scholar 

  • Keast, J. R., & de Groat, W. C. (1992). Segmental distribution and peptide content of primary afferent neurons innervating the urogenital organs and colon of male rats. Journal of Comparative Neurology, 319, 615–623.

    PubMed  CAS  Google Scholar 

  • Klarskov, P., Gerstenberg, T., & Hald, T. (1984). Vasoactive intestinal polypeptide influence on lower urinary tract smooth muscle from human and pig. Journal of Urology, 131, 1000–1004.

    PubMed  CAS  Google Scholar 

  • Klarskov, P., Holm-Bentzen, M., Norgaard, T., Ottesen, B., Walter, S., & Hald, T. (1987). Vasoactive intestinal polypeptide concentration in human bladder neck smooth muscle and its influence on urodynamic parameters. British Journal of Urology, 60, 113–118.

    PubMed  CAS  Google Scholar 

  • Krenz, N. R., Meakin, S. O., Krassioukov, A. V., & Weaver, L. C. (1999). Neutralizing intraspinal nerve growth factor blocks autonomic dysreflexia caused by spinal cord injury. Journal of Neuroscience, 19, 7405–7414.

    PubMed  CAS  Google Scholar 

  • Kruse, M. N., Bray, L. A., & de Groat, W. C. (1995). Influence of spinal cord injury on the morphology of bladder afferent and efferent neurons. Journal of the Autonomic Nervous system, 54, 215–224.

    PubMed  CAS  Google Scholar 

  • Kruse, M. N., Noto, H., Roppolo, J. R., & de Groat, W. C. (1990). Pontine control of the urinary bladder and external urethral sphincter in the rat. Brain Research, 532, 182–190.

    PubMed  CAS  Google Scholar 

  • Kuru, M. (1965). Nervous control of micturition. Physiological Reviews, 45, 425–494.

    PubMed  CAS  Google Scholar 

  • Laburthe, M., Couvineau, A., & Marie, J. C. (2002). VPAC receptors for VIP and PACAP. Receptors & Channels, 8, 137–153.

    CAS  Google Scholar 

  • Larsen, J. J., Ottesen, B., Fahrenkrug, J., & Fahrenkrug, L. (1981). Vasoactive intestinal polypeptide (VIP) in the male genitourinary tract: concentration and motor effect. Investigative Urology, 19, 211–213.

    PubMed  Google Scholar 

  • Lasanen, L. T., Tammela, T. L., Liesi, P., Waris, T., & Polak, J. M. (1992). The effect of acute distension on vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and substance P (SP) immunoreactive nerves in the female rat urinary bladder. Urological Research, 20, 259–263.

    PubMed  CAS  Google Scholar 

  • Liu, G. J., & Madsen, B. W. (1997). PACAP38 modulates activity of NMDA receptors in cultured chick cortical neurons. Journal of Neurophysiology, 78, 2231–2234.

    PubMed  CAS  Google Scholar 

  • Mallory, B. S., Roppolo, J. R., & de Groat, W. C. (1991). Pharmacological modulation of the pontine micturition center. Brain Research, 546, 310–320.

    PubMed  CAS  Google Scholar 

  • Mattiasson, A., Andersson, K. E., Andersson, P. O., Larsson, B., Sjogren, C., & Uvelius, B. (1990). Nerve-mediated functions in the circular and longitudinal muscle layers of the proximal female rabbit urethra. Journal of Urology, 143, 155–160.

    PubMed  CAS  Google Scholar 

  • Mattiason, A., Andersson, K. E., & Sjögren, C. (1985a). Adrenergic and non-adrenergic contraction of isolated urethral muscle from rabbit and man. Journal of Urology, 133, 298–303.

    Google Scholar 

  • Mattiasson, A., Ekblad, E., Sundler, F., & Uvelius, B. (1985b). Origin and distribution of neuropeptide Y-, vasoactive intestinal polypeptide-and substance P-containing nerve fibers in the urinary bladder of the rat. Cell and Tissue Research, 239, 141–146.

    PubMed  CAS  Google Scholar 

  • Milner, P., Crowe, R., Burnstock, G., & Light, J. K. (1987). Neuropeptide Y- and vasoactive intestinal polypeptide-containing nerves in the intrinsic external urethral sphincter in the areflexic bladder compared to detrusor-sphincter dyssynergia in patients with spinal cord injury. Journal of Urology, 138, 888–892.

    PubMed  CAS  Google Scholar 

  • Miura, A., Kawatani, M., & de Groat, W. C. (2001). Effects of pituitary adenylate cyclase activating polypeptide on lumbosacral preganglionic neurons in the neonatal rat spinal cord. Brain Research, 895, 223–232.

    PubMed  CAS  Google Scholar 

  • Mohammed, H., Hannibal, J., Fahrenkrug, J., & Santer, R. (2002). Distribution and regional variation of pituitary adenylate cyclase activating polypeptide and other neuropeptides in the rat urinary bladder and ureter: Effects of age. Urological Research, 30, 248–255.

    PubMed  CAS  Google Scholar 

  • Moller, K., Zhang, Y. Z., Hakanson, R., Luts, A., Sjolund, B., Uddman, R., et al. (1993). Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: Immunocytochemical and immunochemical evidence. Neuroscience, 57, 725–732.

    PubMed  CAS  Google Scholar 

  • Morgan, C., Nadelhaft, I., & de Groat, W. C. (1981). The distribution of visceral primary afferents from the pelvic nerve to Lissauer’s tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. Journal of Comparative Neurology, 201, 415–440.

    PubMed  CAS  Google Scholar 

  • Morgan, C. W., Ohara, P. T., & Scott, D. E. (1999). Vasoactive intestinal polypeptide in sacral primary sensory pathways in the cat. Journal of Comparative Neurology, 407, 381–394.

    PubMed  CAS  Google Scholar 

  • Nadelhaft, I., & Vera, P. L. (1991). Conduction velocity distribution of afferent fibers in the female rat hypogastric nerve. Brain Research, 539, 228–232.

    PubMed  CAS  Google Scholar 

  • Noto, H., Roppolo, J. R., Steers, W. D., & de Groat, W. C. (1991). Electrophysiological analysis of the ascending and descending components of the micturition reflex pathway in the rat. Brain Research, 549, 95–105.

    PubMed  CAS  Google Scholar 

  • Ohnishi, N., Park, Y. C., Kurita, T., & Kajimoto, N. (1997). Role of ATP and related purine compounds on urethral relaxation in male rabbits. International Journal of Urology, 4, 191–197.

    PubMed  CAS  Google Scholar 

  • Pantaloni, C., Brabet, P., Bilanges, B., Dumuis, A., Houssami, S., Spengler, D., et al. (1996). Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. Journal of Biological Chemistry, 271, 22146–22151.

    PubMed  CAS  Google Scholar 

  • Papka, R. E., Workley, M., Usip, S., Mowa, C. N., & Fahrenkrug, J. (2006). Expression of pituitary adenylate cyclase activating peptide in the uterine cervix, lumbosacral dorsal root ganglia and spinal cord of rats during pregnancy. Peptides, 27, 743–752.

    PubMed  CAS  Google Scholar 

  • Persson, K., Alm, P., Johansson, K., Larsson, B., & Andersson, K. E. (1995). Co-existence of nitrergic, peptidergic and acetylcholine esterase-positive nerves in the pig lower urinary tract. Journal of the Autonomic Nervous System, 52, 225–236.

    PubMed  CAS  Google Scholar 

  • Radziszewski, P., Ekblad, E., Sundler, F., & Mattiasson, A. (1996). Distribution of neuropeptide-, tyrosine hydroxylase- and nitric oxide synthase containing nerve fibers in the external urethral sphincter of the rat. Scandinavian Journal of Urology and Nephrology, 179, 81–85.

    PubMed  CAS  Google Scholar 

  • Reubi, J. C. (2000). In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues. Clinical implications. Annals of the New York Academy of Sciences, 921, 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Saito, M., Kondo, A., Gotoh, M., Kato, K., & Levin, R. M. (1993). Age-related changes in the response of the rat urinary bladder to neurotransmitters. Neurourology and Urodynamics, 12, 191–200.

    PubMed  CAS  Google Scholar 

  • Seki, S., Sasaki, K., Fraser, M. O., Igawa, Y., Nishizawa, O., Chancellor, M. B., et al. (2002). Immunoneutralization of nerve growth factor in lumbosacral spinal cord reduces bladder hyperreflexia in spinal cord injured rats. Journal of Urology, 168, 2269–2274.

    PubMed  CAS  Google Scholar 

  • Seki, S., Sasaki, K., Igawa, Y., Nishizawa, O., Chancellor, M. B., De Groat, W. C., et al. (2004). Suppression of detrusor-sphincter dyssynergia by immunoneutralization of nerve growth factor in lumbosacral spinal cord in spinal cord injured rats. Journal of Urology, 171, 478–482.

    PubMed  Google Scholar 

  • Sherwood, N. M., Krueckl, S. L., & McRory, J. E. (2000). The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocrine Reviews, 21, 619–670.

    PubMed  CAS  Google Scholar 

  • Sie, J. A., Blok, B. F., de Weerd, H., & Holstege, G. (2001). Ultrastructural evidence for direct projections from the pontine micturition center to glycine-immunoreactive neurons in the sacral dorsal gray commissure in the cat. Journal of Comparative Neurology, 429, 631–637.

    PubMed  CAS  Google Scholar 

  • Sienkiewicz, W., Kaleczyc, J., Czaja, K., & Lakomy, M. (2004). Adrenergic, nitrergic and peptidergic innervation of the urethral muscle in the boar. Folia histochemica et cytobiologica/Polish Academy of Sciences, Polish Histochemical and Cytochemical Society, 42, 89–94.

    PubMed  CAS  Google Scholar 

  • Sjögren, C., Andersson, K. E., & Mattiasson, A. (1985). Effects of vasoactive intestinal polypeptide on isolated urethral and urinary bladder smooth muscle from rabbit and man. Journal of Urology, 133, 136–140.

    PubMed  Google Scholar 

  • Sugaya, K., Matsuyama, K., Takakusaki, K., & Mori, S. (1987). Electrical and chemical stimulations of the pontine micturition center. Neuroscience Letters, 80, 197–201.

    PubMed  CAS  Google Scholar 

  • Suzuki, T. (1992). Vasoactive intestinal polypeptide-depolarizations in hamster submandibular ganglion. Bulletin of Tokyo Dental College, 33, 71–74.

    CAS  Google Scholar 

  • Suzuki, T., Ono, H., & Ikegami, H. (2003). PACAP-induced depolarizations in hamster submandibular ganglion neurons. Bulletin of Tokyo Dental College, 44, 21–24.

    PubMed  CAS  Google Scholar 

  • Thor, K., Kawatani, M., & de Groat, W. C. (1986). Plasticity in the reflex pathways to the lower urinary tract of the cat during postnatal development and following spinal cord injury. In M. E. Goldberger, A. Gorio, & M. Murray (Eds.) Development and plasticity of the mammalian spinal cord (vol. 1, (pp. 65–80)). Padova: Liviana Press.

    Google Scholar 

  • Tiseo, P. J., & Yaksh, T. L. (1990). The spinal pharmacology of urinary function: Studies on urinary continence in the unanaesthetized rat. Ciba Foundation Symposium, 151, 91–104.

    PubMed  CAS  Google Scholar 

  • Tomkins, J. D., Ardell, J. L., Hoover, D. B., & Parsons, R. L. (2007). Neurally released pituitary adenylate cyclase-activating polypeptide enhances guinea pig intrinsic cardiac neurone excitability. Journal of Physiology (London), 582, 87–93.

    Google Scholar 

  • Torrens, M., & Morrison, J. F. B. (1987). The physiology of the lower urinary tract (edited by Torrens, M., & Morrison, J. F. B.) pp. 3–350. Heidelberg: Springer.

    Google Scholar 

  • Ückert, S., Stief, C. G., Lietz, B., Burmester, M., Jonas, U., & Machtens, S. A. (2002). Possible role of bioactive peptides in the regulation of human detrusor smooth muscle—Functional effects in vitro and immunohistochemical presence. World Journal of Urology, 20, 244–249.

    PubMed  Google Scholar 

  • Uemura, E., Fletcher, T. F., Dirks, V. A., & Bradley, W. E. (1973). Distribution of sacral afferent axons in cat urinary bladder. American Journal of Anatomy, 136, 305–313.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Yon, L., Fournier, A., & Vaudry, H. (2000). Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions. Pharmacological Reviews, 52, 269–324.

    PubMed  CAS  Google Scholar 

  • Vizzard, M. A. (2000a). Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis. Journal of Comparative Neurology, 420, 335–348.

    PubMed  CAS  Google Scholar 

  • Vizzard, M. A. (2000b). Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Experimental Neurology, 161, 273–284.

    PubMed  CAS  Google Scholar 

  • Vizzard, M. A. (2006). Neurochemical plasticity and the role of neurotrophic factors in bladder reflex pathways after spinal cord injury. Progress in Brain Research, 152, 97–115.

    PubMed  CAS  Google Scholar 

  • Wanigasekara, Y., Kepper, M. E., & Keast, J. R. (2003). Immunohistochemical characterisation of pelvic autonomic ganglia in male mice. Cell and Tissue Research, 311, 175–185.

    PubMed  Google Scholar 

  • Werkström, V., Alm, P., Persson, K., & Andersson, K. E. (1998). Inhibitory innervation of the guinea-pig urethra: Roles of CO, NO and VIP. Journal of the Autonomic Nervous System, 74, 33–42.

    PubMed  Google Scholar 

  • Werkström, V., Persson, K., & Andersson, K. E. (1997). NANC transmitters in the female pig urethra—Localization and modulation of release via alpha 2-adrenoceptors and potassium channels. British Journal of Pharmacology, 121, 1605–1612.

    PubMed  Google Scholar 

  • Yoshimura, N. (1999). Bladder afferent pathway and spinal cord injury: Possible mechanisms inducing hyperreflexia of the urinary bladder. Progress in Neurobiology, 57, 583–606.

    PubMed  CAS  Google Scholar 

  • Yoshimura, N., Bennett, N. E., Hayashi, Y., Ogawa, T., Nishizawa, O., Chancellor, M. B., et al. (2006). Bladder overactivity and hyperexcitability of bladder afferent neurons after intrathecal delivery of nerve growth factor in rats. Journal of Neuroscience, 26, 10847–10855.

    PubMed  CAS  Google Scholar 

  • Yoshimura, N., & de Groat, W. C. (1997a). Neural control of the lower urinary tract. International Journal of Urology, 4, 111–125.

    PubMed  CAS  Google Scholar 

  • Yoshimura, N., & de Groat, W. C. (1997b). Plasticity of Na channels in afferent neurons innervating rat urinary bladder following spinal cord injury. Journal of Physiology (London), 503, 269–276.

    CAS  Google Scholar 

  • Yoshimura, N., Erdman, S. L., Snider, M. W., & de Groat, W. C. (1998). Effects of spinal cord injury on neurofilament immunoreactivity and capsaicin sensitivity in rat dorsal root ganglion neurons innervating the urinary bladder. Neuroscience, 83, 633–643.

    PubMed  CAS  Google Scholar 

  • Yoshimura, N., Seki, S., Erickson, K. A., Erickson, V. L., Chancellor, M. B., & de Groat, W. C. (2003). Histological and electrical properties of rat dorsal root ganglion neurons innervating the lower urinary tract. Journal of Neuroscience, 23, 4355–4361.

    PubMed  CAS  Google Scholar 

  • Yoshiyama, M., & de Groat, W. C. (2008). Effects of intrathecal administration of pituitary adenylate cyclase activating polypeptide on lower urinary tract functions in rats with intact or transected spinal cords. Experimental Neurology, 211, 449–455.

    PubMed  CAS  Google Scholar 

  • Yoshiyama, M., de Groat, W. C., & Fraser, M. O. (2000). Influences of external urethral sphincter relaxation induced by alpha-bungarotoxin, a neuromuscular junction blocking agent, on voiding dysfunction in the rat with spinal cord injury. Urology, 55, 956–960.

    PubMed  CAS  Google Scholar 

  • Zhou, Y., & Ling, E. A. (1998). Colocalization of nitric oxide synthase and some neurotransmitters in the intramural ganglia of the guinea pig urinary bladder. Journal of Comparative Neurology, 394, 496–505.

    PubMed  CAS  Google Scholar 

  • Zhou, Y., & Ling, E. A. (1999). Nitric oxide synthase—Its distribution and alteration in the intramural ganglia of the urinary bladder in normal and urethra-obstructed guinea pigs. Annals of the Academy of Medicine, Singapore, 28, 49–61.

    PubMed  CAS  Google Scholar 

  • Zvara, P., Braas, K. M., May, V., & Vizzard, M. A. (2006). A role for pituitary adenylate cyclase activating polypeptide (PACAP) in detrusor hyperreflexia after spinal cord injury (SCI). Annals of the New York Academy of Sciences, 1070, 622–628.

    PubMed  CAS  Google Scholar 

  • Zvarova, K., Dunleavy, J. D., & Vizzard, M. A. (2005). Changes in pituitary adenylate cyclase activating polypeptide expression in urinary bladder pathways after spinal cord injury. Experimental Neurology, 192, 46–59.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants DK 49430 and DK 77783 to WD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. de Groat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshiyama, M., de Groat, W.C. The Role of Vasoactive Intestinal Polypeptide and Pituitary Adenylate Cyclase-Activating Polypeptide in the Neural Pathways Controlling the Lower Urinary Tract. J Mol Neurosci 36, 227–240 (2008). https://doi.org/10.1007/s12031-008-9090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9090-6

Keywords

Navigation