Skip to main content

Advertisement

Log in

The Environment, Epigenetics and Amyloidogenesis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s Disease (AD) is a progressive, irreversible neurodegenerative disease. Despite several genetic mutations (Haass et al., J. Biol. Chem. 269:17741–17748, 1994; Ancolio et al., Proc. Natl. Acad. Sci. USA 96:4119–4124, 1999; Munoz and Feldman, CMAJ 162:65–72, 2000; Gatz et al., Neurobiol. Aging 26:439–447, 2005) found in AD patients, more than 90% of AD cases are sporadic (Bertram and Tanzi, Hum. Mol. Genet. 13:R135–R141, 2004). Therefore, it is plausible that environmental exposure may be an etiologic factor in the pathogenesis of AD. The AD brain is characterized by extracellular beta-amyloid (Aβ) deposition and intracellular hyperphosphorylated tau protein. Our lab has demonstrated that developmental exposure of rodents to the heavy metal lead (Pb) increases APP (amyloid precursor protein) and Aβ production later in the aging brain (Basha et al., J. Neurosci. 25:823–829, 2005a). We also found elevations in the oxidative marker 8-oxo-dG in older animals that had been developmentally exposed to Pb (Bolin et al., FASEB J. 20:788–790, 2006) as well as promotion of amyloidogenic histopathology in primates. These findings indicate that early life experiences contribute to amyloidogenesis in old age perhaps through epigenetic pathways. Here we explore the role of epigenetics as the underlying mechanism that mediates this early exposure-latent pathogenesis with a special emphasis on alterations in the methylation profiles of CpG dinucleotides in the promoters of genes and their influence on both gene transcription and oxidative DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, R. D., White, L. R., Ross, G. W., Petrovitch, H., Masaki, K. H., Snowdon, D. A., et al. (1998). Height as a marker of childhood development and late-life cognitive function: The Honolulu–Asia Aging Study. Pediatrics, 102, 602–609.

    Article  PubMed  CAS  Google Scholar 

  • Ancolio, K., Dumanchin, C., Barelli, H., Warter, J. M., Brice, A., Campion, D., et al. (1999). Unusual phenotypic alteration of beta amyloid precursor protein (betaAPP) maturation by a new Val-715 –> Met betaAPP-770 mutation responsible for probable early-onset Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 96, 4119–4124.

    Article  PubMed  CAS  Google Scholar 

  • Barker, D. J., Winter, P. D., Osmond, C., Margetts, B., & Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. Lancet, 8663, 577–580.

    Article  Google Scholar 

  • Basha, M. R., Wei, W., Bakheet, S. A., Benitez, N., Siddiqi, H. K., Ge, Y., et al. (2005a) The fetal-basis of amyloidogenesis: Exposure to lead and latent over-expression of amyloid precursor protein and β-amyloid in the aging brain. Journal of Neuroscience, 25, 823–829.

    Article  PubMed  CAS  Google Scholar 

  • Basha, M. R., Wu, J., Wei, W., Siddiqi, H., Brock, B., Anderson, A., et al. (2005b). Lead (Pb) and the developmental origin of Alzheimer’s disease. Pediatric Research, 58(5), 1026.

    Google Scholar 

  • Bertram, L., & Tanzi, R. E. (2004). Alzheimer’s disease: One disorder, too many genes? Human Molecular Genetics, 13, R135–R141.

    Article  PubMed  CAS  Google Scholar 

  • Bolin, C. M., Basha, R., Cox, D., Zawia, N. H., Maloney, B., Lahiri, D. K., et al. (2006). Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB Journal, 20, 788–790.

    PubMed  CAS  Google Scholar 

  • Butterfield, D. A. (2002). Amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: Implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radical Research, 36, 1307–1313.

    Article  PubMed  CAS  Google Scholar 

  • Castellani, R. J., Lee, H. G., Perry, G., & Smith, M. A. (2006). Antioxidant protection and neurodegenerative disease: The role of amyloid-beta and tau. American Journal of Alzheimer’s Disease and Other Dementias, 21, 126–130.

    Article  PubMed  Google Scholar 

  • Clark, S. J., Harrison, J., & Molloy, P. L. (1997). Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene, 195, 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, R., Smith, A. D., Jobst, K. A., Refsum, H., Sutton, L., & Ueland, P. M. (1998). Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Archives of Neurology, 55, 1449–1455.

    Article  PubMed  CAS  Google Scholar 

  • Conel, J. L. (1939). The brain structure of the new born infant and consideration of the senile brain: In the inter-relationship of mind and body (pp. 247–255). Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  • Cory-Slechta, D. A., Gilbert, M. E., Tiffany-Castiglioni, E., Zawia, N. H., Virgolini, M., Rossi-George, A., et al. (2007). New concepts in the neurotoxicology of lead (Pb). Toxicology and Applied Pharmacology (in press).

  • Cummings, J. L. (2004). Alzheimer’s disease. Neuroscience Letters, 351, 56–67.

    CAS  Google Scholar 

  • Eckman, C. B., Mehta, N. D., Crook, R., Perez-tur, J., Prihar, G., Pfeiffer, E., et al. (1997). A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Human Molecular Genetics, 6, 2087–2089.

    Article  PubMed  CAS  Google Scholar 

  • Emanuel, I. (1997). Invited commentary: An assessment of maternal intergenerational factors in pregnancy outcome. American Journal of Epidemiology, 146, 820–825.

    PubMed  CAS  Google Scholar 

  • Feil, R. (2006). Environmental and nutritional effects on the epigenetic regulation of genes. Mutation Research, 600, 46–57.

    PubMed  CAS  Google Scholar 

  • Feng, X., Zhao, P., He, Y., & Zuo, Z. (2006). Allele-specific silencing of Alzheimer’s disease genes: The amyloid precursor protein genes with Swedish or London mutations. Gene, 371, 68–74.

    Article  PubMed  CAS  Google Scholar 

  • Fuso, A., Seminara, L., Cavallaro, R. A., D'Anselmi, F., & Scarpa, S. (2005). S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Molecular and Cellular Neurosciences, 28, 194–204.

    Google Scholar 

  • Gatz, M., Fratiglioni, L., Johansson, B., Berg, S., Mortimer, J. A., Reynolds, C. A., et al. (2005). Complete ascertainment of dementia in the Swedish Twin Registry: The HARMONY study. Neurobiology of Aging, 26, 439–447.

    Article  PubMed  Google Scholar 

  • Gatz, M., Pedersen, N. L., Berg, S., Johansson, B., Johansson, K., and Mortimer, J. A., et al. (1997). Heritability for Alzheimer’s disease: The study of dementia in Swedish twins. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 52, M117–M125.

    CAS  Google Scholar 

  • Goedart, M., & Spillantini, M. G. (2006). A century of Alzheimer’s disease. Science, 314, 777–781.

    Article  CAS  Google Scholar 

  • Gorell, J. M., Rybicki, B. A., Cole Johnson, C., & Peterson, E. L. (1999). Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology, 18, 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Graves, A. B., Mortimer, J. A., Larson, E. B., Wenzlow, A., Bowen, J. D., & McCormick, W. C. (1996). Head circumference as a measure of cognitive reserve. Association with severity of impairment in Alzheimer’s disease. British Journal of Psychiatry, 169, 86–92.

    PubMed  CAS  Google Scholar 

  • Haass, C., Hung, A. Y., Selkoe, D. J., & Teplow, D. B. (1994). Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. Journal of Biological Chemistry, 269, 17741–17748.

    PubMed  CAS  Google Scholar 

  • Haraguchi, T., Ishizu, H., Takehisa, Y., Kawai, K., Yokota, O., Terada, S., et al. (2001). Lead content of brain tissue in diffuse neurofibrillary tangles with calcification (DNTC): The possibility of lead neurotoxicity. NeuroReport, 21, 3887–3890.

    Article  Google Scholar 

  • Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256, 184–185.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, L. E., Scherr, P. A., Bienias, J. L., Bennett, D. A., & Evans, D. A. (2003). Alzheimer disease in the US population: Prevalence estimates using the 2000 census. Archives of Neurology, 60, 1119–1122.

    Article  PubMed  Google Scholar 

  • Hoffman, P. W., & Chernak, J. M. (1995). DNA binding and regulatory effects of transcription factors SP1 and USF at the rat amyloid precursor protein gene promoter. Nucleic Acids Research, 25, 2229–2235.

    Article  Google Scholar 

  • Hoyer, A., Bardenheuer, H. J., Martin, E., & Plaschke, K. (2005). Amyloid precursor protein (APP) and its derivatives change after cellular energy depletion. An in vitro-study. Journal of Neural Transmission, 112, 239–253.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, J. L., & Jacobson, S. W. (1991). Assessment of teratogenic effects on cognitive and behavioral development in infancy and childhood. NIDA Research Monograph, 114, 248–261.

    PubMed  CAS  Google Scholar 

  • Kamel, F., Umbach, D. M., Munsat, T. L., Shefner, J. M., Hu, H., & Sandler, D. P. (2002). Lead exposure and amyotrophic lateral sclerosis. Epidemiology, 13, 311–319.

    Article  PubMed  Google Scholar 

  • Kramer, M. S., & Joseph, K. S. (1996). Enigma of fetal/infant-origins hypothesis. Lancet, 348, 1254–1255.

    Article  PubMed  CAS  Google Scholar 

  • Liu, G., Huang, W., Moir, R. D., Vanderburg, C. R., Lai, B., Peng, Z., et al. (2006). Metal exposure and Alzheimer’s pathogenesis. Journal of Structural Biology, 155, 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Lukiw, W. J., Rogaev, E. I., Wong, L., Vaula, G., McLachlan, D. R., & St George Hyslop, P. (1994). Protein-DNA interactions in the promoter region of the amyloid precursor protein (APP) gene in human neocortex. Brain Research. Molecular Brain Research, 22, 121–131.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (1997). Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiological Reviews, 77, 1081–1132.

    PubMed  CAS  Google Scholar 

  • Mulder, C., Schoonenboom, N. S., Jansen, E. E., Verhoeven, N. M., van Kamp, G. J., Jakobs, C., et al. (2005). The transmethylation cycle in the brain of Alzheimer patients. Neuroscience Letters, 386, 69–71.

    Article  PubMed  CAS  Google Scholar 

  • Munoz, D. G., & Feldman, H. (2000). Causes of Alzheimer’s disease. Canadian Medical Association Journal, 162, 65–72.

    PubMed  CAS  Google Scholar 

  • Nagane, Y., Utsugisawa, K., & Tohgi, H. (2000). PCR amplification in bisulfite methylcytosine mapping in the GC-rich promoter region of amyloid precursor protein gene in autopsy human brain. Brain Research. Brain Research Protocols, 5, 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Niculescu, M. D., Craciunescu, C. N., & Zeisel, S. H. (2005). Gene expression profiling of choline-deprived neural precursor cells isolated from mouse brain. Molecular Brain Research, 134, 309–322.

    Article  PubMed  CAS  Google Scholar 

  • Niculescu, M. D., Craciunescu, C. N., & Zeisel, S. H. (2006). Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. The FASEB Journal, 20, 43–49.

    Article  PubMed  CAS  Google Scholar 

  • Niklowitz, W. J., & Mandybur, T. I. (1975). Neurofibrillary changes following childhood lead encephalopathy. Journal of Neuropathology and Experimental Neurology, 34, 445–455.

    PubMed  CAS  Google Scholar 

  • Obeid, R., Herrmann, W. (2006). Mechanism of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Letters, 580, 2994–3005.

    Article  PubMed  CAS  Google Scholar 

  • Obregon, D. F., Rezai-Zadeh, K., Bai, Y., Sun, N., Hou, H., Ehrhart, J., et al. (2006). ADAM10 activation is required for green tea (−)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. Journal of Biological Chemistry, 281, 16419–16427.

    Article  PubMed  CAS  Google Scholar 

  • Ono, K., Hamaguchi, T., Naiki, H., & Yamada, M. (2006). Anti-amyloidogenic effects of antioxidants: Implications for the prevention and therapeutics of Alzheimer’s disease. Biochimica et Biophysica Acta, 1762, 575–586.

    PubMed  CAS  Google Scholar 

  • Pollwein, P., Masters, C. L., & Beyreuther, K. (1992). The expression of the amyloid precursor protein (APP) is regulated by two GC-elements in the promoter. Nucleic Acids Research, 20, 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Querfurth, H. W., Jiang, J., Xia, W., & Selkoe, D. J. (1999). Enhancer function and novel DNA binding protein activity in the near upstream betaAPP gene promoter. Gene, 232, 125–141.

    Article  PubMed  CAS  Google Scholar 

  • Raiha, I., Kaprio, J., Koskenvuo, M., Rajala, T., & Sourander, L. (1997). Alzheimer’s disease in twins. Biomedicine & Pharmacotherapy, 51, 101–104.

    Article  CAS  Google Scholar 

  • Rogaev, E. I., Lukiw, W. J., Lavrushina, O., Rogaeva, E. A., & St George-Hyslop, P. H. (1994). The upstream promoter of the beta-amyloid precursor protein gene (APP) shows differential patterns of methylation in human brain. Genomics, 22, 340–347.

    Article  PubMed  CAS  Google Scholar 

  • Salbaum, J. M., Weidemann, A., Masters, C. L., & Beyreuther, K. (1989). The promoter of Alzheimer’s disease amyloid A4 precursor gene. Progress in Clinical and Biological Research, 317, 277–283.

    PubMed  CAS  Google Scholar 

  • Scarpa, S., Cavallaro, A. R., D'Anselmi, F., & Fuso, A. (2006). Gene silencing through methylation: An epigenetic intervention on Alzheimer disease. Journal of Alzheimer’s Disease, 9, 407–414.

    PubMed  CAS  Google Scholar 

  • Scarpa, S., Fuso, A., D'Anselmi, F., & Cavallaro, R. A. (2003). Presenilin 1 gene silencing by S-adenosylmethionine: A treatment for Alzheimer disease. FEBS Letters, 541, 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiological Reviews, 81, 741–766.

    PubMed  CAS  Google Scholar 

  • Snowdon, D. A., Kemper, S. J., Mortimer, J. A., Greiner, L. H., Wekstein, D. R., & Markesbery, W. R. (1996). Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life. Findings from the Nun Study. JAMA, 275, 528–532.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Goedert, M., Crowther, R. A., Murrell, J. R., Farlow, M. R., & Ghetti, B. (1997). Familial multiple system tauopathy with presenile dementia: A disease with abundant neuronal and glial tau filaments. Proceedings of the National Academy of Sciences of the United States of America, 94, 4113–4118.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W. F., Schwartz, B. S., Davatzikos, C., Shen, D., Liu, D., Wu, X., et al. (2006). Past adult lead exposure is linked to neurodegeneration measured by brain MRI. Neurology, 66, 1476–1484.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W. F., Schwartz, B. S., Simon, D., Kelsey, K., & Todd, A. C. (2002). ApoE genotype, past adult lead exposure, and neurobehavioral function. Environmental Health Perspectives, 110, 501–505.

    Article  PubMed  CAS  Google Scholar 

  • Suh, Y. H., & Checler, F. (2002). Amyloid precursor protein, presenilins, and alpha-synuclein: Molecular pathogenesis and pharmacological applications in Alzheimer’s disease. Pharmacological Reviews, 54, 469–525.

    Article  PubMed  CAS  Google Scholar 

  • Tanner, T. (1978). Circling behaviour in the rat following unilateral injections of p-chlorophenylalanine and ethanolamine-O-sulphate into the substantia nigra. Journal of Pharmacy and Pharmacology, 30, 158–161.

    PubMed  CAS  Google Scholar 

  • Tohgi, H., Utsugisawa, K., Nagane, Y., Yoshimura, M., Genda, Y., & Ukitsu, M. (1999). Reduction with age in methylcytosine in the promoter region −224 approximately −101 of the amyloid precursor protein gene in autopsy human cortex. Brain Research. Molecular Brain Research, 70, 288–292.

    Article  PubMed  CAS  Google Scholar 

  • Turk, W. P., Layoun, A., Smith, S. S., & Weitzman, S. A. (1995). DNA adduct 8-hydroxyl-2′-deoxyguanosine (8-hydeoxyguanine) affects function of human DNA methyltansferase. Carcinogenesis, 16, 1253–1255.

    Article  PubMed  CAS  Google Scholar 

  • Tyagi, N., Moshal, K. S., Ovechkin, A. V., Rodriguez, W., Steed, M., Henderson, B., et al. (2005). Mitochondrial mechanism of oxidative stress and systemic hypertension in hyperhomocysteinemia. Journal of Cellular Biochemistry, 96, 665–671.

    Article  PubMed  CAS  Google Scholar 

  • Valinluck, V., Tsai, H. H., Rogstad, D. K., Burdzy, A., Bird, A., & Sowers, L. C. (2004). Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2(MeCP2). Nucleic Acids Research, 32, 4100–4108.

    Article  PubMed  CAS  Google Scholar 

  • Weitzman, A. S., Turk, W. P., Milkowski, D. H., & Kozlowski, K. (1994). Free radical adducts induce alterations in DNA cytosine methylation. Proceedings of the National Academy of Sciences of the United States of America, 91, 1261–1264.

    Article  PubMed  CAS  Google Scholar 

  • Yatin, S. M., Varadarajan, S., & Butterfield, D. A. (2000). Vitamin E prevents Alzheimer’s amyloid beta-peptide (1–42)-induced neuronal protein oxidation and reactive oxygen species production. Journal of Alzheimer’s Disease, 2, 123–131.

    PubMed  CAS  Google Scholar 

  • Zhu, W. G., Srinivasan, K., Dai, Z., Duan, W., Druhan, L. J., Ding, H., et al. (2003). Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Molecular and Cellular Biology, 23, 4056–4065.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser H. Zawia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Basha, M.R. & Zawia, N.H. The Environment, Epigenetics and Amyloidogenesis. J Mol Neurosci 34, 1–7 (2008). https://doi.org/10.1007/s12031-007-0009-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0009-4

Keywords

Navigation