Skip to main content
Log in

The Pro-tumor and Anti-tumor Effects of NLRP3 Inflammasome as a New Therapeutic Option for Colon Cancer: a Meta-analysis of Pre-clinical Studies

  • Review Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

In this review, we aimed to elaborate on these findings and explore how NLRP3 inflammasome affects CRC and which mechanism could be a potential therapeutic target. For this purpose, major indexing databases consist of Cochrane central, ISI web of science (WOS), PubMed/Medline, Scopus, and EMBASE were systematically searched using standard terms without any language, study region, or type restrictions. After applying the exclusion criteria, the main properties of 12 articles on 326 animals included in this meta-analysis. Of 12, eight were about an anti-tumoral effect, and four were on a pro-tumoral effect of the inflammasome. NLRP3 inhibition reduced IL-1β (SMD: −4.14, 95% CI: −5.49, −2.79, P < 0.00001, I2 = 76%), TNFα (SMD: −2.18, 95% CI: −3.23, −1.13, P < 0.00001, I2 = 82%), and IL-18 (SMD: −2.27, 95% CI: −3.38, −1.16, P = 0.0002, I2 = 74%) significantly contrasted with the model controls. Colons harvested from NLRP3 inhibition groups showed significant truncation compared with the model controls (SMD: −1.75, 95% CI: −2.69, −0.81, P = 0.0003, I2 = 60%). We demonstrated significantly decreased tumorigenesis following NLRP3 inactivation, as well as an increased survival rate compared with the model controls. To translate anti-cancer agents based on anti-NLRP3 from bench to bedside, it is necessary to identify the molecules that selectively target NLRP3 or its downstream pathways in malignant cells, as well as considering metabolic heterogeneity and the mechanisms causing such cancer-connected heterogeneity. Other studies are needed to separate the molecular and functional complexity of this network.

Summary

Secretion of IL-1β is contingent upon activation of the inflammasome complex of NLRP3. It has been suggested that activation of this complex necessitates two signals. One of these signals is made available by activation of toll-like-receptor (TLR)-mediated NF-kappa and actuates the IL-1β precursor synthesis and NLRP3 assembly. Another signal is conceivable to be mediated by hazard signals e.g., the purinergic P2X7 receptor stimulated by Adenosine triphosphate or other stimuli resulting in the efflux of potassium.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tanaka T. Colorectal carcinogenesis: review of human and experimental animal studies. Journal of carcinogenesis. 2009;8:5–5. https://doi.org/10.4103/1477-3163.49014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: a cancer journal for clinicians. 2020;70(1):7–30. https://doi.org/10.3322/caac.21601.

  3. Sharma RA, Dalgleish AG, Steward WP, O’Byrne KJ. Angiogenesis and the immune response as targets for the prevention and treatment of colorectal cancer (review). Oncol Rep. 2003;10(5):1625–31.

    CAS  PubMed  Google Scholar 

  4. Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life. 2019;12(2):113–22. https://doi.org/10.25122/jml-2018-0075.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stidham RW, Higgins PDR. Colorectal cancer in inflammatory bowel disease. Clin Colon Rectal Surg. 2018;31(3):168–78. https://doi.org/10.1055/s-0037-1602237.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. https://doi.org/10.3390/ijms20133328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsuchiya K. Inflammasome-associated cell death: pyroptosis, apoptosis, and physiological implications. Microbiol Immunol. 2020;64(4):252–69. https://doi.org/10.1111/1348-0421.12771.

    Article  CAS  PubMed  Google Scholar 

  8. Chou K-C, Tomasselli AG, Heinrikson RL. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett. 2000;470(3):249–56.

    Article  CAS  PubMed  Google Scholar 

  9. Lian Q, Xu J, Yan S, Huang M, Ding H, Sun X, Bi A, Ding J, Sun B, Geng M. Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation. Cell Res. 2017;27(6):784–800. https://doi.org/10.1038/cr.2017.54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cunha LD, Silva ALN, Ribeiro JM, Mascarenhas DPA, Quirino GFS, Santos LL, Flavell RA, Zamboni DS. AIM2 engages active but unprocessed caspase-1 to induce noncanonical activation of the NLRP3 inflammasome. Cell Rep. 2017;20(4):794–805. https://doi.org/10.1016/j.celrep.2017.06.086.

    Article  CAS  PubMed  Google Scholar 

  11. Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA, Vajjhala PR, Roberts TL, Schroder K, Vince JE, Hill JM, Silke J, Stacey KJ. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 2013;20(9):1149–60. https://doi.org/10.1038/cdd.2013.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chassaing B, Aitken JD, Malleshappa M, Vijay‐Kumar M. Dextran sulfate sodium (DSS)‐induced colitis in mice. Current protocols in immunology. 2014;104(1):15–25. https://doi.org/10.1002/0471142735.im1525s104.

  13. Kim CS, Park S, Kim J. The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise. J Exerc Nutrition Biochem. 2017;21(3):55–61. https://doi.org/10.20463/jenb.2017.0027.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Jama. 2000;283(15):2008–12. https://doi.org/10.1001/jama.283.15.2008.

  15. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34. https://doi.org/10.1016/j.jclinepi.2009.06.006.

    Article  PubMed  Google Scholar 

  16. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43. https://doi.org/10.1186/1471-2288-14-43.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rohatgi A. 2021. WebPlotDigitizer. Available from: https://automeris.io/WebPlotDigitizer [cited 27 April 2021].

  18. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135. https://doi.org/10.1186/1471-2288-14-135.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C, Ting JP. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010;207(5):1045–56. https://doi.org/10.1084/jem.20100050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bauer C, Duewell P, Mayer C, Lehr HA, Fitzgerald KA, Dauer M, Tschopp J, Endres S, Latz E, Schnurr M. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut. 2010;59(9):1192–9. https://doi.org/10.1136/gut.2009.197822.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Zheng Z, Li C, Pan Y, Tang X, Wang XJ. Synthetic imine resveratrol analog 2-methoxyl-3,6-dihydroxyl-IRA ameliorates colitis by activating protective Nrf2 pathway and inhibiting NLRP3 expression. Oxid Med Cell Longev. 2019;2019:7180284. https://doi.org/10.1155/2019/7180284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai G, Jiang Z, Sun B, Liu C, Meng Q, Ding K, Jing W, Ju W. Caffeic acid phenethyl ester prevents colitis-associated cancer by inhibiting NLRP3 inflammasome. Front Oncol. 2020;10:721. https://doi.org/10.3389/fonc.2020.00721.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deng Q, Geng Y, Zhao L, Li R, Zhang Z, Li K, Liang R, Shao X, Huang M, Zuo D, Wu Y, Ma Q. NLRP3 inflammasomes in macrophages drive colorectal cancer metastasis to the liver. Cancer Lett. 2019;442:21–30. https://doi.org/10.1016/j.canlet.2018.10.030.

    Article  CAS  PubMed  Google Scholar 

  24. Hirota SA, Ng J, Lueng A, Khajah M, Parhar K, Li Y, Lam V, Potentier MS, Ng K, Bawa M, McCafferty DM, Rioux KP, Ghosh S, Xavier RJ, Colgan SP, Tschopp J, Muruve D, MacDonald JA, Beck PL. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis. 2011;17(6):1359–72. https://doi.org/10.1002/ibd.21478.

    Article  PubMed  Google Scholar 

  25. Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, Eisenbarth SC, Flavell RA. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A. 2010;107(50):21635–40. https://doi.org/10.1073/pnas.1016814108.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Iida T, Hirayama D, Minami N, Matsuura M, Wagatsuma K, Kawakami K, Nagaishi K, Nojima M, Ikeuchi H, Hirota S, Shirakawa R, Horiuchi H, Nakase H. Down-regulation of RalGTPase-activating protein promotes colitis-associated cancer via NLRP3 inflammasome activation. Cell Mol Gastroenterol Hepatol. 2020;9(2):277–93. https://doi.org/10.1016/j.jcmgh.2019.10.003.

    Article  PubMed  Google Scholar 

  27. Itani S, Watanabe T, Nadatani Y, Sugimura N, Shimada S, Takeda S, Otani K, Hosomi S, Nagami Y, Tanaka F, Kamata N, Yamagami H, Tanigawa T, Shiba M, Tominaga K, Fujiwara Y, Arakawa T. NLRP3 inflammasome has a protective effect against oxazolone-induced colitis: a possible role in ulcerative colitis. Sci Rep. 2016;6:39075. https://doi.org/10.1038/srep39075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang H, Wang Y, Du Q, Lu P, Fan H, Lu J, Hu R. Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells. Exp Cell Res. 2016;342(2):184–92. https://doi.org/10.1016/j.yexcr.2016.03.009.

    Article  CAS  PubMed  Google Scholar 

  29. Yao X, Zhang C, Xing Y, Xue G, Zhang Q, Pan F, Wu G, Hu Y, Guo Q, Lu A, Zhang X, Zhou R, Tian Z, Zeng B, Wei H, Strober W, Zhao L, Meng G. Remodelling of the gut microbiota by hyperactive NLRP3 induces regulatory T cells to maintain homeostasis. Nat Commun. 2017;8(1):1896. https://doi.org/10.1038/s41467-017-01917-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 2010;32(3):379–91. https://doi.org/10.1016/j.immuni.2010.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M, Kanneganti TD. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol. 2010;185(8):4912–20. https://doi.org/10.4049/jimmunol.1002046.

    Article  CAS  PubMed  Google Scholar 

  32. Nistal E, Fernández-Fernández N, Vivas S, Olcoz JL. Factors determining colorectal cancer: the role of the intestinal microbiota. Front Oncol. 2015;5:220–220. https://doi.org/10.3389/fonc.2015.00220.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Perera AP, Sajnani K, Dickinson J, Eri R, Körner H. NLRP3 inflammasome in colitis and colitis-associated colorectal cancer. Mamm Genome. 2018;29(11):817–30. https://doi.org/10.1007/s00335-018-9783-2.

    Article  CAS  PubMed  Google Scholar 

  34. Mangan MSJ, Olhava EJ, Roush WR, Martin Seidel H, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discovery. 2018;17(8):588–606.

    Article  CAS  PubMed  Google Scholar 

  35. Hamarsheh S, Zeiser R. NLRP3 inflammasome activation in cancer: a double-edged sword. Front Immunol. 2020;11:1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakher Rahim.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (DOCX 196 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanawat, M., Arjmand, B. & Rahim, F. The Pro-tumor and Anti-tumor Effects of NLRP3 Inflammasome as a New Therapeutic Option for Colon Cancer: a Meta-analysis of Pre-clinical Studies. J Gastrointest Canc 54, 227–236 (2023). https://doi.org/10.1007/s12029-022-00805-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-022-00805-3

Keywords

Navigation