Skip to main content

Advertisement

Log in

Application of Parametric Shared Frailty Models to Analyze Time-to-Death of Gastric Cancer Patients

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

Despite its declining incidence, gastric cancer (GC) is one of the world’s leading malignancies and a major global health concern due to its high prevalence and fatality rate. Furthermore, it is the world’s fourth most common cancer and the second leading cause of cancer death. Studying the determinants of time to death of gastric cancer patients will give clinicians more information to develop specific treatment plans, forecast prognosis, and track the progress of death cases. The application of the frailty model can help account for random variation in survival that may exist due to unobserved factors, as well as show the impact of latent factors on death risk. As a result, the purpose of this study was to assess the determinants of time to death of GC patients’ by applying the parametric shared frailty models.

Methods

The data for this study were obtained from gastric cancer patients admitted to the Tikur Anbesa Specialized Hospital, Addis Ababa, from January 1, 2015, to February 29, 2020. With the aim of coming up with an appropriate survival model that determines factors that affect the time to death of gastric cancer patients, various parametric shared frailty models were compared. In all of the frailty models, patient regions were used as a clustering variable. The current study implemented exponential, Weibull, log-logistic, and lognormal distributions for baseline hazard functions with gamma and inverse Gaussian’s frailty distributions. The performance of all models was compared using the AIC and BIC criteria. R statistical software was used to conduct the analysis.

Results

A retrospective study was undertaken on a total of 407 gastric cancer patients under follow-up at Tikur Anbesa Specialized Hospital. Of all 407 GC patients, 56.3% died while the remaining 43.7% were censored. The patients’ median time to death was 21.9 months, with a maximum survival time of 49.6 months. In the current study, the clustering effect was significant in modeling the time to death from gastric cancer. The Weibull model with inverse Gaussian frailty has the minimum AIC and BIC value among the candidate models compared. The dependency within the clusters for the Weibull–inverse Gaussian frailty model was \(kendal{l}^{^{\prime}}s tau(\tau )=0.134\) (13.4%). According to the results of our best model (Weibull–inverse Gaussian), the sex of the patient, the smoking status, the tumor size, the treatment taken, the vascular invasion, and the disease stage was found to be statistically significant at an alpha = 0.05 significance level.

Conclusion

Time to death of GC patient’s data set was well described by the Weibull–inverse Gaussian shared frailty. Furthermore, Weibull baseline distribution best fits the GC data set as it enables proportional hazard and accelerated failure time model, for time to failure data. There is unobserved heterogeneity between clusters (patient regions), indicating the need to account for this clustering effect. In this study, survival time to death among GC patients was discovered to be small. Covariates like older age, being male, having higher (advanced) stage of GC disease (stage three and stage four), advanced tumor size, being smoker, infected by Helicobacter pylori, and existence of vascular invasion significantly accelerate the time to death of GC patients. In contrast, talking combination of more treatments prolongs the time to death of patients. To improve the health of patients, interventions should be taken based on significant prognostic factors, with special attention dedicated to patients with such factors to prevent GC death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used in this study are available from the corresponding author on reasonable request.

Abbreviations

AA:

Addis Ababa

AFT:

Acceleration failure time

AIC:

Akanke’s Information Criteria

BIC:

Bayesian Information Criteria

CI:

Confidence interval for acceleration factor

GC:

Gastric cancer

GI:

Gastrointestinal

LRT:

The likelihood ratio test

N.G.I:

Non-gastrointestinal

P.D.T:

Poorly differentiated tumor

S.R.C:

Signet ring cell

TASH:

Tikur Anbesa Specialized Hospital

WDT:

Well-differentiated tumor

References

  1. Prithviraj GK, Almhanna K. Gastric cancer: molecular mechanisms, diagnosis, and treatment, in Int. Man. Oncol. Pract.: Springer; 2015. p. 229–61.

    Google Scholar 

  2. Suzuki H, Ishii H. Role of apoptosis in Helicobacter pylori-associated gastric mucosal injury. J Gastroenterol Hepatol. 2000;15:46–54.

    Article  Google Scholar 

  3. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors, and prevention. Prz Gastroenterol. 2018;2019(14):26–38.

    Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A, Global cancer statistics,. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(2018):394–424.

    Article  PubMed  Google Scholar 

  5. Lelisho ME, Seid AA, Pandey D. A case study on modeling the time to recurrence of gastric cancer patients. J Gastrointest Cancer. 2021;1–10.

  6. Rugge M, Capelle LG, Fassan M. Individual risk stratification of gastric cancer: evolving concepts and their impact on clinical practice. Best Pract Res Clin Gastroenterol. 2014;28:1043–53.

    Article  PubMed  Google Scholar 

  7. Sabesan A, Bennett JJ. Diagnosis, staging, and workup of gastric cancer, in Gastric Cancer, Springer 2015;127–142.

  8. Röcken C. Molecular classification of gastric cancer, Expert Rev. Mol Diagn. 2017;17:293–301.

    Google Scholar 

  9. Dalhammar K, Malmström M, Schelin M, Falkenback D, Kristensson J. The impact of initial treatment strategy and survival time on quality of end-of-life care among patients with oesophageal and gastric cancer: A population-based cohort study. Plos one. 2020;15(6):e0235045.

  10. Tokunaga M, Tanizawa Y, Bando E, Kawamura T, Terashima M. Poor survival rate in patients with postoperative intra-abdominal infectious complications following curative gastrectomy for gastric cancer. Ann Surg Oncol. 2013;20:1575–83.

    Article  PubMed  Google Scholar 

  11. Hashimoto K, Aoyagi K, Isobe T, Kouhuji K, Shirouzu K. Expression of CD133 in the cytoplasm is associated with cancer progression and poor prognosis in gastric cancer. Gastric Cancer. 2014;17:97–106.

    Article  CAS  PubMed  Google Scholar 

  12. Lian Y, Sang M, Gu L, Liu F, Yin D, Liu S, Huang W, Wu Y, Shan B. MAGE-a family is involved in gastric cancer progression and indicates poor prognosis of gastric cancer patients. Pathol Pract. 2017;213:943–8.

    Article  CAS  Google Scholar 

  13. Johnson O, Ersumo T, Ali A. Gastric carcinoma at Tikur Anbessa Hospital, Addis Ababa., East Afr. Med J. 2000;77:27–30.

    CAS  Google Scholar 

  14. Milne AN, Carneiro F, O’morain C, Offerhaus GJ. Nature meets nurture: molecular genetics of gastric cancer. Human genetics. 2009;126(5):615–28.

  15. Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388:2654–64.

    Article  PubMed  Google Scholar 

  16. Yaprak G, Tataroglu D, Dogan B, Pekyurek M. Prognostic factors for survival in patients with gastric cancer: Single-centre experience. North Clin Istanbul. 2020;7:146.

    Google Scholar 

  17. Qiu M, Cai M, Zhang D, Wang Z, Wang D, Li Y, Xu R. Clinicopathological characteristics and prognostic analysis of Lauren classification in gastric adenocarcinoma in China. J Transl Med. 2013;11:1–7.

    Article  CAS  Google Scholar 

  18. Chou H-H, Kuo C-J, Hsu J-T, Chen T-H, Lin C-J, Tseng J-H, Yeh T-S, Hwang T-L, Jan Y-Y. Clinicopathologic study of node-negative advanced gastric cancer and analysis of factors predicting its recurrence and prognosis. Am J Surg. 2013;205:623–30.

    Article  PubMed  Google Scholar 

  19. Carr JS, Zafar SF, Saba N, Khuri FR, El-Rayes BF. Risk factors for the rising incidence of esophageal and gastric cardia adenocarcinoma. J Gastrointest Cancer. 2013;44:143–51.

    Article  PubMed  Google Scholar 

  20. Harrell FE. Cox proportional hazards regression model, in Regrets. Model. Strategy.: Springer; 2015. p. 475–519.

    Google Scholar 

  21. Hougaard P. Frailty models for survival data. Lifetime Data Anal. 1995;1:255–73.

    Article  CAS  PubMed  Google Scholar 

  22. Hougaard P. Shared frailty models, in Anal. Multivar. Survival. Data: Springer; 2000. p. 215–62.

    Google Scholar 

  23. Duchateau L, Janssen P, Lindsey P, Legrand C, Nguti R, Sylvester R. The shared frailty model and the power for heterogeneity tests in multicenter trials. Comput Stat Data Anal. 2002;40:603–20.

    Article  Google Scholar 

  24. Huang X, Liu L. A joint frailty model for survival and gap times between recurrent events. Biometrics. 2007;63:389–97.

    Article  PubMed  Google Scholar 

  25. Klein JP, Moeschberger M, Li YH, Wang ST, Flournoy N. Estimating random effects in the Framingham heart study, in Surviv. Anal. State Art: Springer; 1992. p. 99–120.

    Google Scholar 

  26. Cox DR. Regression models, and life-tables. J R Stat Soc Ser B. 1972;34:187–202.

    Google Scholar 

  27. Goethals K, Ampe B, Berkvens D, Laevens H, Janssen P, Duchateau L. Modeling interval-censored, clustered cow udder quarter infection times through the shared gamma frailty model. J Agric Biol Environ Stat. 2009;14:1–14.

    Article  Google Scholar 

  28. Goethals K, Janssen P, Duchateau L. Frailty models and copulas: similarities and differences. J Appl Stat. 2008;35:1071–9.

    Article  Google Scholar 

  29. Wienke A. Frailty models in survival analysis, CRC Press 2010.

  30. Abdulkarimova U. Frailty models for modelling heterogeneity. Doctoral Diss. 2013;ix–76.

  31. Munda M, Rotolo F, Legrand C. parfm: parametric frailty models in R. J Stat Softw. 2012;51:1–20.

    Article  Google Scholar 

  32. Vonesh EF, Greene T, Schluchter MD. Shared parameter models for the joint analysis of longitudinal data and event times. Stat Med. 2006;25:143–63.

    Article  PubMed  Google Scholar 

  33. Khan JR, Bari W, Latif AHMM. Trend of determinants of birth interval dynamics in Bangladesh. BMC Public Health. 2016;16:1–11.

    Google Scholar 

  34. Kleinbaum DG, Klein M. Competing risks survival analysis. Surviv Anal A Self-Learning Text. 2005;391–461.

  35. Vaupel JW, Manton KG, Stallard E. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography. 1979;16:439–54.

    Article  CAS  PubMed  Google Scholar 

  36. Habil RN. Frailty models in survival analysis. Wittenb Halle-Wittenb. 2007;101–108.

  37. Aalen OO. Effects of frailty in survival analysis. Stat Methods Med Res. 1994;3:227–43.

    Article  CAS  PubMed  Google Scholar 

  38. Hashibe M, Brennan P, Chuang S, Boccia S, Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW, Fabianova E. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium, Cancer Epidemiol. Prev. Biomarkers. 2009;18:541–50.

    CAS  Google Scholar 

  39. Clayton D, Cuzick J. Multivariate generalizations of the proportional hazards model. J R Stat Soc Ser A. 1985;148:82–108.

    Article  Google Scholar 

  40. Wienke A, Lichtenstein P, Yashin AI. A bivariate frailty model with a cure fraction for modeling familial correlations in diseases. Biometrics. 2003;59:1178–83.

    Article  PubMed  Google Scholar 

  41. Gebeyehu A. Survival analysis of time-to-first birth after marriage among women in Ethiopia: application of parametric shared frailty model. Jimma: Dep. Stat. Coll. Nat. Sci. Jimma Univ; 2015.

    Google Scholar 

  42. Wienke A. Frailty models in survival analysis. 2010. https://doi.org/10.1201/9781420073911.

    Article  Google Scholar 

  43. Banbeta A, Seyoum D, Belachew T, Birlie B, Getachew Y. Modeling time-to-cure from severe acute malnutrition: application of various parametric frailty models. Arch Public Heal. 2015;73:1–8.

    Google Scholar 

  44. Rasouli M, Ghadimi MR, Mahmoodi M, Mohammad K, Zeraati H, Hosseini M. Survival analysis of patients with esophageal cancer using parametric cure model. Asian Pac J Cancer Prev. 2011;12:2359–63.

    PubMed  Google Scholar 

  45. Hanagal DD, Sharma R. Comparison of frailty models for acute leukemia data under Gompertz baseline distribution, Commun. Stat. Methods. 2015;44:1338–50.

    Google Scholar 

  46. Glidden DV, Vittinghoff E. Modelling clustered survival data from multicentre clinical trials. Stat Med. 2004;23:369–88.

    Article  PubMed  Google Scholar 

  47. Liu D, Lu M, Li J, Yang Z, Feng Q, Zhou M, Zhang Z, Shen L. The patterns and timing of recurrence after curative resection for gastric cancer in China, World. J Surg Oncol. 2016;14:1–11.

    CAS  Google Scholar 

  48. Kang W-M, Meng Q-B, Yu J-C, Ma Z-Q, Li Z-T. Factors associated with early recurrence after curative surgery for gastric cancer. World J Gastroenterol WJG. 2015;21:5934.

    Article  PubMed  Google Scholar 

  49. Talebi A, Mohammadnejad A, Akbari A, Pourhoseingholi MA, Doosti H, Moghimi-Dehkordi B, Agah S, Bahardoust M. Survival analysis in gastric cancer: a multi-center study among Iranian patients. BMC Surg. 2020;20:1–8.

    Article  Google Scholar 

  50. Lee JG, Kim SA, Eun CS, Han DS, Kim YS, Choi BY, Song KS, Kim HJ, Park CH. Impact of age on stage-specific mortality in patients with gastric cancer: A long-term prospective cohort study. PLoS One. 2019;14(8):e0220660.

  51. Fujiwara Y, Fukuda S, Tsujie M, Ishikawa H, Kitani K, Inoue K, Yukawa M, Inoue M. Effects of age on survival and morbidity in gastric cancer patients undergoing gastrectomy. World J Gastrointest Oncol. 2017;9:257.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol. 2020;18:534–42.

    Article  PubMed  Google Scholar 

  53. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F, Global cancer statistics,. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020;71(2021):209–49.

    Google Scholar 

  54. Yamaguchi K, Yoshida K, Tanahashi T, Takahashi T, Matsuhashi N, Tanaka Y, Tanabe K, Ohdan H. The long-term survival of stage IV gastric cancer patients with conversion therapy. Gastric Cancer. 2018;21:315–23.

    Article  CAS  PubMed  Google Scholar 

  55. Yoshida S, Kozu T, Gotoda T, Saito D. Detection and treatment of early cancer in high-risk populations. Best Pract Res Clin Gastroenterol. 2006;20:745–65.

    Article  PubMed  Google Scholar 

  56. Ladeiras-Lopes R, Pereira AK, Nogueira A, Pinheiro-Torres T, Pinto I, Santos-Pereira R, Lunet N. Smoking and gastric cancer: systematic review and meta-analysis of cohort studies. Cancer Causes Control. 2008;19:689–701.

    Article  PubMed  Google Scholar 

  57. Nomura AMY, Wilkens LR, Henderson BE, Epplein M, Kolonel LN. The association of cigarette smoking with gastric cancer: the multiethnic cohort study. Cancer Causes Control. 2012;23:51–8.

    Article  PubMed  Google Scholar 

  58. Orman S, Cayci HM. Gastric cancer: factors affecting survival. Acta Chir Belg. 2019;119:24–30.

    Article  PubMed  Google Scholar 

  59. van Putten M, Nelen SD, Lemmens VE, Stoot JH, Hartgrink HH, Gisbertz SS, Spillenaar Bilgen EJ, Heisterkamp J, Verhoeven RH, Nieuwenhuijzen GA. Overall survival before and after centralization of gastric cancer surgery in the Netherlands. J British Surg. 2018;105(13):1807–15.

  60. Saito H, Kuroda H, Matsunaga T, Fukuda K, Tatebe S, Tsujitani S, Ikeguchi M. Prognostic indicators in node-negative advanced gastric cancer patients. J Surg Oncol. 2010;101:622–5.

    Article  PubMed  Google Scholar 

  61. Strong VE, Wu A, Selby LV, Gonen M, Hsu M, Song KY, Park CH, Coit DG, Ji J, Brennan MF. Differences in gastric cancer survival between the US and China. J Surg Oncol. 2015;112:31–7.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Iwasa S, Kudo T, Takahari D, Hara H, Kato K, Satoh T. Practical guidance for the evaluation of disease progression and the decision to change treatment in patients with advanced gastric cancer receiving chemotherapy. Int J Clin Oncol. 2020;25:1223–32.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kuo C-Y, Chao Y, Li C-P. Update on treatment of gastric cancer. J Chinese Med Assoc. 2014;77:345–53.

    Article  Google Scholar 

  64. Wu B, Wu D, Wang M, Wang G. Recurrence in patients following curative resection of early gastric carcinoma. J Surg Oncol. 2008;98:411–4.

    Article  PubMed  Google Scholar 

  65. Rivera F, Vega-Villegas ME, López-Brea MF. Chemotherapy of advanced gastric cancer. Cancer Treat Rev. 2007;33:315–24.

    Article  CAS  PubMed  Google Scholar 

  66. Salati M, Di Emidio K, Tarantino V, Cascinu S. Second-line treatments: moving towards an opportunity to improve survival in advanced gastric cancer?. ESMO open. 2017;2(3):e000206.

  67. Katai H, Ishikawa T, Akazawa K, Isobe Y, Miyashiro I, Oda I, Tsujitani S, Ono H, Tanabe S, Fukagawa T. Five-year survival analysis of surgically resected gastric cancer cases in Japan: a retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007). Gastric Cancer. 2018;21:144–54.

    Article  PubMed  Google Scholar 

  68. Valladares-Ayerbes M, Reboredo M, Medina-Villaamil V, Iglesias-Díaz P, Lorenzo-Patiño MJ, Haz M, Santamarina I, Blanco M, Fernández-Tajes J, Quindós M. Circulating miR-200c as a diagnostic and prognostic biomarker for gastric cancer. J Transl Med. 2012;10:1–14.

    Article  Google Scholar 

  69. Fock KM, Ang TL. Epidemiology of Helicobacter pylori infection and gastric cancer in Asia. J Gastroenterol Hepatol. 2010;25:479–86.

    Article  CAS  PubMed  Google Scholar 

  70. Ferreccio C, Rollán A, Harris PR, Serrano C, Gederlini A, Margozzini P, Gonzalez C, Aguilera X, Venegas A, Jara A. Gastric cancer is related to early Helicobacter pylori infection in a high-prevalence country, Cancer Epidemiol. Prev. Biomarkers. 2007;16:662–7.

    CAS  Google Scholar 

  71. Choi IJ, Kim CG, Lee JY, Kim Y-I, Kook M-C, Park B, Joo J. Family history of gastric cancer and Helicobacter pylori treatment. N Engl J Med. 2020;382:427–36.

    Article  PubMed  Google Scholar 

  72. E.S. Group. An international association between Helicobacter pylori infection and gastric cancer. Lancet. 1993;341:1359–63.

    Article  Google Scholar 

  73. Lochhead P, El-Omar EM. Helicobacter pylori infection and gastric cancer. Best Pract Res Clin Gastroenterol. 2007;21:281–97.

    Article  CAS  PubMed  Google Scholar 

  74. Palli D, Masala G, Del Giudice G, Plebani M, Basso D, Berti D, Numans ME, Ceroti M, Peeters PHM, De Mesquita HBB. CagA+ Helicobacter pylori infection and gastric cancer risk in the EPIC-EURGAST study. Int J Cancer. 2007;120:859–67.

    Article  CAS  PubMed  Google Scholar 

  75. Konturek SJ, Starzynska T, Konturek PC, Karczewska E, Marlicz K, Lawniczak M, Jaroszewicz-Heigelman H, Bielanski W, Hartwich A, Ziemniak A. Helicobacter pylori and CagA status, serum gastrin, interleukin-8 and gastric acid secretion in gastric cancer. Scand J Gastroenterol. 2002;37:891–8.

    Article  CAS  PubMed  Google Scholar 

  76. Kim Y, Choi IJ, Kook M, Cho S, Lee JY, Kim CG, Ryu KW, Kim Y. The association between Helicobacter pylori status and incidence of metachronous gastric cancer after endoscopic resection of early gastric cancer. Helicobacter. 2014;19:194–201.

    Article  PubMed  Google Scholar 

  77. Gresta LT, Rodrigues-Júnior IA, de Castro LPF, Cassali GD, Cabral MMDÁ. Assessment of vascular invasion in gastric cancer: a comparative study. World J Gastroenterol WJG. 2013;19:3761.

    Article  PubMed  Google Scholar 

  78. Kamsali, A., Eranti, B., Mounika, C. H., Manne, R., Barghav, C., & Reddy, S. Development and Optimization of Amoxicillin Floating Raft System to effectively treat Helicobacter pylori infection. Ars Pharmaceutica (Internet). 2020;61(3):163–168.

Download references

Acknowledgements

We would like to thank Tikur Anbesa Specialized Hospital for allowing this data to be collected from patients’ cards. We would also like to thank Jimma University for assisting us in collecting data and conducting this crucial study.

Author information

Authors and Affiliations

Authors

Contributions

MEL: Study conception and design, data collection, analysis and interpretation of results, and manuscript preparation. GMA: Main supervision, guide data analysis and writing the manuscript draft, and review the final manuscript. DK: Co-supervision and advising. SAT: Manuscript revision. Finally, the manuscript was read and approved by all authors.

Corresponding authors

Correspondence to Mesfin Esayas Lelisho or Digvijay Pandey.

Ethics declarations

Ethics Approval and Consent to Participate

The Jimma University Institute of Research Review Board provided ethical approval for this study. The author requested and was granted access to the data from Tikur Anbesa specialized hospital for the purpose of this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esayas Lelisho, M., Akessa, G.M., Kifle Demissie, D. et al. Application of Parametric Shared Frailty Models to Analyze Time-to-Death of Gastric Cancer Patients. J Gastrointest Canc 54, 104–116 (2023). https://doi.org/10.1007/s12029-021-00775-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-021-00775-y

Keywords

Navigation