Skip to main content

Advertisement

Log in

An Insight into Cholangiocarcinoma and Recent Advances in its Treatment

  • Review Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

Cholangiocarcinoma (CCA) is a malignant disease of the epithelial cells of the intrahepatic and extrahepatic bile ducts. This review focuses on various aspects of cholangiocarcinoma such as its associated causes, treatment criteria, and more.

Methods

Although it remains a rare malignancy and is the second most common primary malignancy of the liver, the incidence is increasing, especially the incidence of intrahepatic CCA. Several studies suggested that surgery is not only solution; recently, reported targeted drugs may have the potential to become an alternative option.

Results

This review provides an overview of the current scenario of targeted therapies for CCA, which were tabulated with their current status and it also included its associated causes and its treatment criteria.

Conclusion

Because of its rarity and complexity, surgery remains the preferred treatment in resectable patients. Howerver, the studies suggested that the recently reported drugs may have the potential to be an alternative option for the treatment of CCA and related complications. In addition, this review will certainly benefit the community and researcher for further investigation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCA:

Cholangiocarcinoma

iCCA:

Intrahepatic cholangiocarcinoma

pCCA:

Perihilar cholangiocarcinoma

dCCA:

Distal cholangiocarcinoma

WHO:

World Health Organization

AJCC:

American Joint Committee of Cancer

eCCA:

Extrahepatic cholangiocarcinoma

LNM:

Lymph node metastasis

PSC:

Primary sclerosing cholangitis

IDH:

Isocitrate dehydrogenase

FGFR:

Fibroblast growth factor receptor

VEGFR:

Vascular endothelial growth factor receptor

HGFR:

Hepatocyte growth factor receptor

References

  1. Katkhuda R, Chun YS. Epidemiology and risk factors. Intrahepatic Cholangiocarcinoma. 2019;1–0.

  2. Rizvi S, Khan SA, Hallemeier CL, et al. Cholangiocarcinoma—evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15:95.

    Article  CAS  PubMed  Google Scholar 

  3. Abbasi A, Rahnemai-Azar AA, Ronnekleiv-Kelly SM, et al. Clinical presentation and diagnosis. iCCA. Springer, Cham; 2019. p. 11–20.

  4. Razumilava N, Gores GJ. Combination of gemcitabine and cisplatin for biliary tract cancer: a platform to build on. J Hepatol. 2011;1(54):577–8.

    Article  Google Scholar 

  5. Nakanuma Y, Sato Y, Harada K, et al. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol. 2010;27(2):419.

    Article  Google Scholar 

  6. Banales JM, Cardinale V, Carpino G, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13:261–80.

    Article  PubMed  Google Scholar 

  7. Okuda K, Nakanuma Y, Miyazaki M. Cholangiocarcinoma: recent progress. Part 1: epidemiology and etiology. J Gastroenterol Hepatol. 2002;17(10):1049–55.

  8. Brücher BL, Jamall IS. Chronic inflammation evoked by pathogenic stimulus during carcinogenesis. 4open. 2019;2:8.

  9. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma Hepatol. 2011;54:173–84.

    CAS  Google Scholar 

  10. Cillo U, Fondevila C, Donadon M, et al. Surgery for cholangiocarcinoma. Liver Int. 2019;39:143–55.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rizvi S, Borad MJ, Patel T, et al. Cholangiocarcinoma: molecular pathways and therapeutic opportunities. In: Seminars in liver disease, vol. 34, No. 4. NIH Public Access; 2014. p. 456.

  12. Loosen SH, Roderburg C, Kauertz KL, et al. Elevated levels of circulating osteopontin are associated with a poor survival after resection of cholangiocarcinoma. J Hepatol. 2017;1(67):749–57.

    Article  Google Scholar 

  13. Khan SA, Thomas HC, Davidson BR, et al. Cholangiocarcinoma Lancet. 2005;366:1303–14.

    Article  PubMed  Google Scholar 

  14. Aljiffry M, Abdulelah A, Walsh M, et al. Evidence-based approach to cholangiocarcinoma: a systematic review of the current literature. J Am Coll Surg. 2009;208:134–47.

    Article  PubMed  Google Scholar 

  15. Shaib YH, Davila JA, McGlynn K, et al. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? J Hepatol. 2004;40:472–7.

    Article  PubMed  Google Scholar 

  16. Rahman SU, Sana MK, Tahir Z, et al. Paraneoplastic syndromes in cholangiocarcinoma. World J Hepatol. 2020;12:897.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bertuccio P, Malvezzi M, Carioli G, et al. Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J Hepatol. 2019;71:104–14.

    Article  PubMed  Google Scholar 

  18. Okabayashi T, Yamamoto J, Kosuge T, et al. A new staging system for mass-forming intrahepatic cholangiocarcinoma: analysis of preoperative and postoperative variables. Cancer. 2001;92:2374–83.

    Article  CAS  PubMed  Google Scholar 

  19. Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: Cancer J Clin. 2017;67:93–9.

  20. Murakami Y, Uemura K, Sudo T, et al. Is para-aortic lymph node metastasis a contraindication for radical resection in biliary carcinoma? World J Surg. 2011;35:1085–93.

    Article  PubMed  Google Scholar 

  21. Nagino M, Ebata T, Yokoyama Y, et al. Evolution of surgical treatment for perihilar cholangiocarcinoma: a single-center 34-year review of 574 consecutive resections. Ann Surg. 2013;258:129–40.

    Article  PubMed  Google Scholar 

  22. Nagoya Surgical Oncology Group, Shimoyama Y, Fukami Y, Miyake H, et al. Prognostic impact of lymph node metastasis in distal cholangiocarcinoma. Br J Surg. 2015;102(4):399–406.

  23. DeOliveira ML, Cunningham SC, Cameron JL, et al. holangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg. 2007;245:755.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kitagawa Y, Nagino M, Kamiya J, et al. Lymph node metastasis from hilar cholangiocarcinoma: audit of 110 patients who underwent regional and paraaortic node dissection. Ann Surg. 2001;233:385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Komuta M, Govaere O, Vandecaveye V, et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatol. 2012;55:1876–88.

    Article  CAS  Google Scholar 

  26. Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene. 2006;25:3818–22.

    Article  CAS  PubMed  Google Scholar 

  27. Akiba J, Nakashima O, Hattori S, et al. linicopathologic analysis of combined hepatocellular-cholangiocarcinoma according to the latest WHO classification. Am J Surg Pathol. 2013;37:496–505.

    Article  PubMed  Google Scholar 

  28. Khan SA, Emadossadaty S, Ladep NG, et al. Rising trends in cholangiocarcinoma: is the ICD classification system misleading us? J Hepatol. 2012;56:848–54.

    Article  PubMed  Google Scholar 

  29. McLean L, Patel T. Racial and ethnic variations in the epidemiology of intrahepatic cholangiocarcinoma in the United States. Liver Int. 2006;26:1047–53.

    Article  PubMed  Google Scholar 

  30. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011;54:173–84.

    Article  CAS  PubMed  Google Scholar 

  31. Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. In Seminars in liver disease 2004 May (Vol. 24, No. 02, pp. 115–125). Copyright© 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

  32. Everhart JE, Ruhl CE. Burden of digestive diseases in the United States Part III: liver, biliary tract, and pancreas. Gastroenterol. 2009;136:1134–44.

    Article  Google Scholar 

  33. Khan SA, Davidson BR, Goldin RD, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012;61:1657–69.

    Article  CAS  PubMed  Google Scholar 

  34. Welzel TM, Mellemkjaer L, Gloria G, et al. Risk factors for intrahepatic cholangiocarcinoma in a low-risk population: a nationwide case-control study. Int J Cancer. 2007;1(120):638–41.

    Article  Google Scholar 

  35. Donato F, Gelatti U, Tagger A, et al. Intrahepatic cholangiocarcinoma and hepatitis C and B virus infection, alcohol intake, and hepatolithiasis: a case–control study in Italy. Cancer Causes Control. 2001;12:959–64.

    Article  CAS  PubMed  Google Scholar 

  36. El-Serag HB, Engels EA, Landgren O, et al. Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: a population-based study of US veterans. Hepatol. 2009;49:116–23.

    Article  Google Scholar 

  37. Shaib YH, El-Serag HB, Davila JA, et al. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterol. 2005;128:620–6.

    Article  Google Scholar 

  38. Lee TY, Lee SS, Jung SW, et al. Hepatitis B virus infection and intrahepatic cholangiocarcinoma in Korea: a case-control study. Am J Gastroenterol. 2008;103:1716–20.

    Article  PubMed  Google Scholar 

  39. Zhou YM, Yin ZF, Yang JM, et al. Risk factors for intrahepatic cholangiocarcinoma: a case-control study in China. World J Gastroenterol: WJG. 2008;14:632.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yamamoto S, Kubo S, Hai S, et al. Hepatitis C virus infection as a likely etiology of intrahepatic cholangiocarcinoma. Cancer Sci. 2004;95:592–5.

    Article  CAS  PubMed  Google Scholar 

  41. Chapman MH, Webster GJ, Bannoo S, et al. Cholangiocarcinoma and dominant strictures in patients with primary sclerosing cholangitis; a 25-year single centre experience. Eur J Gastroenterol Hepatol. 2012;24:1051.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chung BK, Karlsen TH, Folseraas T. Cholangiocytes in the pathogenesis of primary sclerosing cholangitis and development of cholangiocarcinoma. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2018;1864(4):1390–400.

  43. Claessen MM, Vleggaar FP, Tytgat KM, et al. High lifetime risk of cancer in primary sclerosing cholangitis J Hepatol. 2009;50:158–64.

    PubMed  Google Scholar 

  44. Boberg KM, Bergquist A, Mitchell S, et al. Cholangiocarcinoma in primary sclerosing cholangitis: risk factors and clinical presentation. Scand J Gastroenterol. 2002;37:1205–11.

    Article  CAS  PubMed  Google Scholar 

  45. European Association for The Study of The Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51:237–67.

    Article  Google Scholar 

  46. Razumilava N, Gores GJ, Lindor KD. Cancer surveillance in patients with primary sclerosing cholangitis. Hepatology. 2011;54:1842–52.

    Article  PubMed  Google Scholar 

  47. Söreide K, Körner H, Havnen J, et al. Bile duct cysts in adults. Br J Plast Surg. 2004;91:1538–48.

    Google Scholar 

  48. Kaewpitoon N, Kaewpitoon SJ, Pengsaa P, et al. Opisthorchisviverrini: the carcinogenic human liver fluke. World J Gastroenterol. 2008;14:666–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shin HR, Lee CU, Park HJ, et al. Hepatitis B and C virus, Clonorchissinensis for the risk of liver cancer: a case-control study in Pusan. Korea Int J Epidemiol. 1996;25:933–40.

    Article  CAS  PubMed  Google Scholar 

  50. Huang MH, Chen CH, Yen CM, et al. Relation of hepatolithiasis to helminthic infestation. J Gastroenterol Hepatol. 2005;20:141–6.

    Article  PubMed  Google Scholar 

  51. Devulapalli KK, Fidelman N, Soulen MC, et al. 90Y Radioembolization for hepatic malignancy in patients with previous biliary intervention: multicenter analysis of hepatobiliary infections. Radiology. 2018;288(3):774–81.

    Article  PubMed  Google Scholar 

  52. Palmer WC, Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol. 2012;57:69–76.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Welzel TM, Graubard BI, Zeuzem S, El-Serag HB, Davila JA, McGlynn KA. Metabolic syndrome increases the risk of primary liver cancer in the United States: a study in the SEER-Medicare database. Hepatol. 2011;54:463–71.

    Article  Google Scholar 

  54. Benson AB, D’Angelica MI, Abbott DE, et al. Hepatobiliary Cancers, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2021;19(5):541–65.

  55. Bridgewater J, Galle PR, Khan SA, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60(6):1268–89.

    Article  PubMed  Google Scholar 

  56. Khan SA, Davidson BR, Goldin RD, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012;61(12):1657–69.

    Article  CAS  PubMed  Google Scholar 

  57. Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273–81.

    Article  CAS  PubMed  Google Scholar 

  58. Grassian AR, Pagliarini R, Chiang DY. Mutations of isocitrate dehydrogenase 1 and 2 in intrahepatic cholangiocarcinoma. Curr Opi Gastroenterol. 2014;30:295–302.

    Article  CAS  Google Scholar 

  59. Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the gliomahypermethylator phenotype. Nature. 2012;483:479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saha SK, Parachoniak CA, Ghanta KS, et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature. 2014;513:110–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Borger DR, Goyal L, Yau T, et al. Circulating oncometabolite 2-hydroxyglutarate is a potential surrogate biomarker in patients with isocitrate dehydrogenase-mutant intrahepatic cholangiocarcinoma. Clin Cancer Res. 2014;20:1884–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kipp BR, Voss JS, Kerr SE, et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Human Pathol. 2012;43:1552–8.

    Article  CAS  Google Scholar 

  63. Borger DR, Tanabe KK, Fan KC, et al. Frequent mutation of isocitrate dehydrogenase (IDH) 1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17:72.

    Article  CAS  PubMed  Google Scholar 

  64. Lowery MA, Burris HA III, Janku F, et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: a phase 1 study. Lancet Gastroenterol Hepatol. 2019;4:711–20.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rahnemai-Azar AA, Pawlik TM. Cholangiocarcinoma: shedding light on the most promising drugs in clinical development. Expert opinion on investigational drugs. 2021.

  66. O’Rourke CJ, Munoz-Garrido P, Andersen JB. Molecular targets in cholangiocarcinoma. Hepatology. 2021;73:62–74.

    Article  PubMed  Google Scholar 

  67. Eder JP, Doroshow DB, Do KT, et al. Clinical Efficacy of Olaparib in IDH1/IDH2-Mutant Mesenchymal Sarcomas. JCO Precis Oncol. 2021;5:466–72.

    Article  PubMed  Google Scholar 

  68. Aitcheson G, Mahipal A, John BV. Targeting FGFR in intrahepatic cholangiocarcinoma [iCCA]: Leading the way for precision medicine in biliary tract cancer [BTC]? Expert Opin Investig Drugs. 2021;30(4):463–77.

    Article  CAS  PubMed  Google Scholar 

  69. Pauff JM, Papadopoulos KP, Janku F, et al. A phase I study of LY3410738, a first-in-class covalent inhibitor of mutant IDH1 in cholangiocarcinoma and other advanced solid tumors. J Clin Oncol. 2021;39(3): TPS350-TPS350.

  70. Xu X, Zhao J, Xu Z, et al. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem. 2004;279:33946–57.

    Article  CAS  PubMed  Google Scholar 

  71. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.

    Article  CAS  PubMed  Google Scholar 

  72. Churi CR, Shroff R, Wang Y, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PloS one. 2014;9:e115383.

  73. Wu YM, Su F, Kalyana-Sundaram S, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer discov. 2013;3(6):636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Busset MD, Shaib WL, Mody K, et al. 47P Derazantinib for patients with intrahepatic cholangiocarcinoma harboring FGFR2 fusions/rearrangements: primary results from the phase II study FIDES-01. Ann Oncol. 2021;32:S376.

    Article  Google Scholar 

  75. Botrus G, Raman P, Oliver T, et al. Infigratinib (BGJ398): an investigational agent for the treatment of FGFR-altered intrahepatic cholangiocarcinoma. Expert Opin Investig Drugs. 2021;30(4):309–16.

    Article  CAS  PubMed  Google Scholar 

  76. Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. The Lancet Oncol. 2020;21:671–84.

    Article  CAS  PubMed  Google Scholar 

  77. Rizzo A, Ricci AD, Brandi G. Pemigatinib: hot topics behind the first approval of a targeted therapy in cholangiocarcinoma. Cancer Treat Res Commun. 2021;18:100337.

  78. Dietrich D. FGFR-targeted therapy in head and neck carcinomas. HNO. 2021;69:172–84.

    Article  PubMed  Google Scholar 

  79. Weaver A, Bossaer JB. Fibroblast growth factor receptor (FGFR) inhibitors: A review of a novel therapeutic class. J Oncol Pharm Pract. 2021;27(3):702–10.

    Article  CAS  PubMed  Google Scholar 

  80. Rizzo A, Ricci AD, Brandi G. Futibatinib, an investigational agent for the treatment of intrahepatic cholangiocarcinoma: Evidence to date and future perspectives. Expert Opin Investig Drugs. 2021;30(4):317–24.

    Article  CAS  PubMed  Google Scholar 

  81. https://pubchem.ncbi.nlm.nih.gov/compound/Fisogatinib [accessed on 1305/2021].

  82. Nault JC, Villanueva A. Biomarkers for hepatobiliary cancers Hepatol. 2021;73:115–27.

    Google Scholar 

  83. Paliogiannis P, Attene F, Cossu A, et al. Impact of tissue type and content of neoplastic cells of samples on the quality of epidermal growth factor receptor mutation analysis among patients with lung adenocarcinoma. Mol Med Rep. 2015;12:187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Han W, Lo HW. Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Lett. 2012;318:124–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wieduwilt MJ, Moasser M. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci. 2008;65(10):1566–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Samatiwat P, Tabtimmai L, Suphakun P, et al. The Effect of the EGFR-Targeting Compound 3-[(4-Phenylpyrimidin-2-yl) Amino] Benzene-1-Sulfonamide (13f) against Cholangiocarcinoma Cell Lines. Asian Pac J Cancer Prev. 2021;22:381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. https://pubchem.ncbi.nlm.nih.gov/compound/Lapatinib [accessed on 13/05/2021].

  88. Sahu R, Mishra R, Majee C. An insight into primary biliary cholangitis and its recent advances in treatment: semi-synthetic analogs to combat ursodeoxycholic-acid resistance. Expert Rev Gastroenterol Hepatol. 2020;14(10):985–98.

    Article  CAS  PubMed  Google Scholar 

  89. Yoshikawa D, Ojima H, Kokubu A, et al. Vandetanib (ZD6474), an inhibitor of VEGFR and EGFR signalling, as a novel molecular-targeted therapy against cholangiocarcinoma. Br J Cancer. 2009;100:1257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sardar M, Shroff RT. Biliary cancer: gateway to comprehensive molecular profiling. Clin Adv Hematol Oncol: H&O. 2021;19:27–34.

    Google Scholar 

  91. Shitara K, Yamanaka T, Denda T, et al. REVERCE: a randomized phase II study of regorafenib followed by cetuximab versus the reverse sequence for previously treated metastatic colorectal cancer patients. Ann Oncol. 2019;30(2):259–65.

    Article  CAS  PubMed  Google Scholar 

  92. Martinelli E, De Palma R, Orditura M, et al. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin Exp Immunol. 2009;158(1):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hirata H, Kuwatani M, Nakajima K, et al. Near-infrared photoimmunotherapy (NIR-PIT) on cholangiocarcinoma using a novel catheter device with light emitting diodes. Cancer Sci. 2021;112:828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yarlagadda B, Kamatham V, Ritter A, et al. Trastuzumab and pertuzumab in circulating tumor DNA ERBB2-amplified HER2-positive refractory cholangiocarcinoma. NPJ JCO Precis Oncol. 2019;3:1–5.

    CAS  Google Scholar 

  95. Yoshikawa D, Ojima H, Iwasaki M, et al. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer. 2008;98.

  96. Tang D, Nagano H, Yamamoto H, et al. Angiogenesis in cholangiocellular carcinoma: expression of vascular endothelial growth factor, angiopoietin-1/2, thrombospondin-1 and clinicopathological significance. Oncol reports. 2006;15(3):525–32.

    CAS  Google Scholar 

  97. Amin NE, Hansen TF, Fernebro E, et al. Randomized phase II trial of combination chemotherapy with panitumumab or bevacizumab for patients with inoperable biliary tract cancer without KRAS exon 2 mutations. Int J Cancer. 2021;149(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  98. Wang M, Chen Z, Guo P, et al. Therapy for advanced cholangiocarcinoma: current knowledge and future potential. J Cell Mol Med. 2021;25:618–28.

    Article  PubMed  Google Scholar 

  99. Di Federico A, Rizzo A, Ricci AD, et al. Nivolumab: an investigational agent for the treatment of biliary tract cancer. Expert Opin Investig Drugs. 2021;30(4):325–32.

    Article  PubMed  Google Scholar 

  100. Mao J, Yang X, Lin J, et al. Apatinib as non-first-line treatment in patients with Intrahepatic Cholangiocarcinoma. J Cancer. 2021;12:1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rahnemai-Azar AA, Weisbrod AB, Dillhoff M, et al. Intrahepatic cholangiocarcinoma: current management and emerging therapies. Expert Rev Gastroenterol Hepatol. 2017;11:439–49.

    Article  CAS  PubMed  Google Scholar 

  102. Sahu R, Mishra R, Kumar R, et al. Pyridine moiety: an insight into recent advances in treatment of cancer. Mini-Rev Med Chem. 2021.

  103. Lu M, Qin X, Zhou Y, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis. 2021;12:1–7.

    Article  Google Scholar 

  104. Fischmann TO, Smith CK, Mayhood TW, et al. Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors. Biochemistry. 2009;48(12):2661–74.

    Article  CAS  PubMed  Google Scholar 

  105. Halle BR, Johnson DB. Defining and Targeting BRAF Mutations in Solid Tumors. Curr Treat Options Oncol. 2021;22:1–5.

    Article  Google Scholar 

  106. O’Neil BH, Goff LW, Kauh JS, et al. Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2011;29:2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. George TJ, DeRemer DL, Lee JH, et al. Phase II trial of the PARP inhibitor, niraparib, in BRCA1-Associated Protein 1 (BAP1) and other DNA damage response (DDR) pathway deficient neoplasms including cholangiocarcinoma. J Clin Oncol. 2021;39:3, TPS354-TPS354.

Download references

Acknowledgements

The authors would like to thank Prof. (Dr.) Pramod Kumar Sharma, Dean, School of Medical and Allied Sciences, Galgotias University, Greater Noida (201310), for providing technical supports.

Author information

Authors and Affiliations

Authors

Contributions

I, Rakesh Sahu (corresponding author), have done the entire work. The preparation of this manuscript is contributed by Dr. Praveen Sharma and Dr. Ajay Kumar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, R., Sharma, P. & Kumar, A. An Insight into Cholangiocarcinoma and Recent Advances in its Treatment. J Gastrointest Canc 54, 213–226 (2023). https://doi.org/10.1007/s12029-021-00728-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-021-00728-5

Keywords

Navigation