Skip to main content

Advertisement

Log in

In vivo Study of a Newly Synthesized Chromen-4-one Derivative as an Antitumor Agent against HCC

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

Chromenes are a wide group of natural compounds that can be synthesized chemically. The chromen-4-one nucleus acts as a skeleton for varieties of additional active groups that makes the chromene activity vary between antioxidant and anti-inflammatory agents. In the present study, a newly synthesized chromene compound exhibits different behaviors other than anti-inflammatory and antioxidant activities that it is the first time that a member of chromen-4-one compound can control the cancer progress. Inflammation is the first step in tumor development where the severity grade can potentiate tumor growth and progression. In many tumors, pro-inflammatory genes record high expression level such as tumor necrosis factor (TNF-α) and vascular endothelial growth factors (VEGF). These pro-inflammatory factors act as rate limiting steps in tumor initiation, and controlling its expression acts as an early therapeutic way to control the tumor proliferation. The chromone derivatives have biological activities such as anti-inflammatory and anti-tumor activity.

Methods

In the present study, hepatocellular cancer (HCC) induced by diethylnitrosamine (DEN) in rats and then treated with the new chromene derivative and the parameters TNF-α, VEGF, p53, Cyt C, MMP-9, Bcl2, and Bax were measured.

Results

The treatment strategy Ch compound is to downregulate pro-inflammatory gene expression of early genes as TNF-α as well as VEGF and subsequently control other factors such as p53, Cyt C, and MMP-9. Also, retrieve the balance between Bcl2 and Bax proteins in DEN-induced HCC in rats.

Conclusion

The ability of the new Ch derivative to control the primary initiators of HCC such as TNF-α offers this derivative an anti-tumor activity and encourages further researches to follow and monitor its effect on the molecular level.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Material

Available.

Abbreviations

TNF-α:

Tumor necrosis factor alpha

VEGF:

Vascular endothelial growth factors

HCC:

Hepatocellular cancer

DCO-6:

(E)-5,7-dihydroxy-3-(3-oxo-3-phenylprop-1-en-1-yl)-4H-chromen-4-one

NO:

Nitric oxide

EAC:

Ehrlich ascites carcinoma

HCV:

Hepatitis C virus

MDA:

Malonaldehyde

ROS:

Reactive oxygen species

MMP:

Metalloproteinase

Cyt c:

Cytochrome C

NCRRT:

National Center for Radiation Research & Technology

DEN:

Diethylnitrosamine

Ch:

[(2E)-2-(4-oxo-4H-chromen-3-yl)methylene amino-4-nitrobenzoic acid

IACUC:

Institutional Animal Care and Use Committee

ALT:

L-alanine aminotransferase

AST:

Aspartate amino transferase

ELISA:

Enzyme-linked immunosorbent assay

AFP:

Alpha-fetoprotein

RT-PCR:

Real-time polymerase chain reaction

cDNA:

Cloned deoxyribonucleic acid

RNA:

Ribonucleic acid

qPCR:

Quantitative real-time polymerase chain reaction

LSD:

Least significant difference

SPSS:

Statistical Package for Social Science

References

  1. Liu GB, Xu JL, Geng M, Xu R, Hui RR, Zhao JW, Xu Q, Xu HX, Li JX. Synthesis of a novel series of diphenolic chromone derivatives as inhibitors of NO production in LPS-activated RAW264. 7 macrophages. Bioorg Med Chem. 2010;18(8):2864-71.

  2. Radvansky LJ, Pace MB, Siddiqui A. Prevention and management of radiation-induced dermatitis, mucositis, and xerostomia. Am J Health Syst Pharm. 2013;70(12):1025-32.

  3. Shebl M, Saif M, Nabeel AI, Shokry R, New A, non-toxic transition metal nanocomplexes and Zn complex-silica xerogelnanohybrid: synthesis, spectral studies, antibacterial and antitumor activities. J Mol Struct. 2016;1118:335–43.

    Article  CAS  Google Scholar 

  4. Elshawi OE, Nabeel AI. Modulatory effect of a new benzopyran derivative via COX-2 blocking and down regulation of NF-κB against γ-radiation induced-intestinal inflammation. J Photochem Photobiol. 2019;192:90-6.

  5. Trinchieri, G, Cancer immunity: lessons from infectious diseases. J Infect Dis. 2015;212:S67–73.

  6. Sondhi SM, Singh J, Rani R, Gupta PP, Agrawal SK, Saxena AK. Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives. Eur J Med Chem. 2010;45(2):555–63.

    Article  CAS  PubMed  Google Scholar 

  7. Petruzziello A, Epidemiology of hepatitis B virus (HBV) and hepatitis C virus (HCV) related hepatocellular carcinoma. Open Virol J. 2018;12:26–32.

    CAS  Google Scholar 

  8. El-Zayadi AR, Badran HM, Barakat EM, Attia ME, Shawky S, Mohamed MK, Selim O, Saeid A. Hepatocellular carcinoma in Egypt: a single center study over a decade. World J Gastroenterol. 2005;11(33):5193.

  9. Liang TJ, Heller T. Pathogenesis of hepatitis C-associated hepatocellular carcinoma. Gastroenterology. 2004;127(5 Suppl 1):S62-71.

    Article  CAS  PubMed  Google Scholar 

  10. El‐Nady GM, Ling R, Harrison TJ. Gene expression in HCV‐associated hepatocellular carcinoma–upregulation of a gene encoding a protein related to the ubiquitin‐conjugating enzyme. Liver Int. 2003;23(5):329-37.

  11. Reh, B.D. and Fajen, J.M., Worker exposures to nitrosamines in a rubber vehicle sealing plant, 1991. Am Ind Hyg Assoc J. 57(10), 918–923.

  12. Santos, N.P., Colaço, A.A. and Oliveira, P.A., Animal models as a tool in hepatocellular carcinoma research: A Review, 2017. Tumour Biol. 39(3),1–20.

  13. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  14. Mohamed ZN, Aly HF, El-Mezayen HA, El-Salamony HE. Effect of co-administration of Bee honey and some chemotherapeutic drugs on dissemination of hepatocellular carcinoma in rats. Toxicology Rep. 2019;6:875–88.

    Article  Google Scholar 

  15. Ou X, Lu Y, Liao L, Li D, Liu L, Liu H, Xu H. Nitidine chloride induces apoptosis in human hepatocellular carcinoma cells through a pathway involving p53, p21, Bax and Bcl-2. Oncol Rep. 2015;33(3):1264-74.

  16. Dillon CP, Green DR. Molecular cell biology of apoptosis and necroptosis in cancer. Adv Exp Med Biol. 2016;930:1–23.

    Article  CAS  PubMed  Google Scholar 

  17. Pritchard JR, Bruno PM, Gilbert LA, Capron KL, Lauffenburger DA, Hemann MT. Defining principles of combination drug mechanisms of action. Proc Natl Acad Sci. 2013 Jan 8;110(2):E170-9.

  18. Wilson JK, Sargent JM, Elgie AW, Hill JG, Taylor CG, A feasibility for chemo sensitivity testing in ovarian malignancy, . Br J Cancer. 1990;2:189–94.

    Article  Google Scholar 

  19. National Research Council. (US) Committee for the Update of the Guide. Guide for the care and use of laboratory animals. 8th ed. Washington, DC: National Academies Press, 2011.

  20. Haggerty HG, Holsapple MP. Role of metabolism in dimethylnitrosamine-induced immunosuppression: a review. Toxicology. 1990;63(1):1-23.

  21. Banchroft JD, Stevens A, Turner DR. Theory and practice of histological techniques.

  22. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Path. 1957;28(1):56-63.

  23. Tsikas, D., Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem. 2017;524:13–30.

    Article  Google Scholar 

  24. Chomczynski PA. reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993;15:532–7.

    CAS  PubMed  Google Scholar 

  25. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:2002–7.

    Article  Google Scholar 

  26. Gao Q, Wang XY, Zhou J, Fan J. Heterogeneity of intermediate-stage HCC necessitates personalized management including surgery. Nat Rev Clin Oncol. 2015;12(1):10.

  27. Enríquez-Cortina C, Bello-Monroy O, Rosales-Cruz P, Souza V, Miranda RU, Toledo-Pérez R, Luna-López A, Simoni-Nieves A, Hernández-Pando R, Gutiérrez-Ruiz MC, Calvisi DF, Marquardt JU, Bucio L, Gomez-Quiroz LE. Cholesterol overload in the liver aggravates oxidative stress-mediated DNA damage and accelerates hepatocarcinogenesis. Oncotarget. 2017;8(61):104136–48.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liang S, Ma H, Zhong Z, Dhar D, Liu X, Xu J, Koyama Y, Nishio T, Karin D, Karin G, Mccubbin R, Zhang C, Hu R, Yang G, Chen L, Ganguly S, Lan T, Karin M, Kisseleva T, Brenner DA. NADPH oxidase 1 in liver macrophages promotes inflammation and tumor development in mice. Gastroenterology. 2019;156(4):1156–72.

    Article  CAS  PubMed  Google Scholar 

  29. Ganeshpurkar A, Saluja A. In silico interaction of rutin with some immunomodulatory target: a docking Analysis. Indian J Biochem Biophys. 2018;55:88–94.

    CAS  Google Scholar 

  30. Saddala MS, Huang H. Identification of novel inhibitors for TNFα, TNFR1 and TNFα-TNFR1 complex using pharmacophore-based approaches. J Transl Med. 2019;17(1):1-6.

  31. Afzal M, Kazmi I, Khan R, Rana P, Kumar V, Al-Abbasi FA, Zamzami MA, Anwar F. Thiamine potentiates chemoprotective effects of ibuprofen in DEN induced hepatic cancer via alteration of oxidative stress and inflammatory mechanism. Arch Biochem Biophys. 2017;1:58–63.

    Article  Google Scholar 

  32. Yang ZF, Poon R. Vascular changes in hepatocellular carcinoma. Anat Rec (Hoboken). 2008;291:721–34.

    Article  CAS  Google Scholar 

  33. Saleem S, Kazmi I, Ahmad A, Abuzinadah MF, Samkari A, Alkrathy HM, Khan R. Thiamin regresses the anticancer efficacy of methotrexate in the amelioration of diethyl nitrosamine-induced hepatocellular carcinoma in Wistar strain rats. Nutr Cancer. 2020;72(1):170-81.

  34. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72:1605–21.

    Article  CAS  PubMed  Google Scholar 

  35. Ibañez E, Cifuentes A. Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric. 2013;93:703–9.

    Article  PubMed  Google Scholar 

  36. Plastaras JP, Guengerich FP, Nebert DW, Marnett LJ. Xenobiotic-metabolizing cytochromes P450 convert prostaglandin endoperoxide to hydroxyheptadecatrienoic acid and the mutagen, malondialdehyde. J Biol Chem. 2000;275:11784–90.

    Article  CAS  PubMed  Google Scholar 

  37. Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res. 1999;424:83–95.

    Article  CAS  PubMed  Google Scholar 

  38. Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem. 2003;278:31426–33.

    Article  CAS  PubMed  Google Scholar 

  39. Marnett LJ. Oxy radicals, lipid peroxidation and DNA damage. Toxicology. 2002;181–182:219–22.

    Article  PubMed  Google Scholar 

  40. Verna L, Whysner J, Williams GM, N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity and tumor initiation, . Pharmacol. Ther. 1996;71:57–81.

    CAS  Google Scholar 

  41. Kang JS, Wanibuchi H, Morimura K, Gonzalez FJ, Fukushima S. Role of CYP2E1 in diethylnitrosamine-induced hepatocarcinogenesis in vivo. Cancer Res. 2007;67:11141–6.

    Article  CAS  PubMed  Google Scholar 

  42. Shirakami Y, Gottesman ME, Blaner WS. Diethyl nitrosamine-induced hepatocarcinogenesis is suppressed in lecithin: retinol acyltransferase-deficient mice primarily through retinoid actions immediately after carcinogen administration. Carcinogenesis. 2012;33(2):268–74.

    Article  CAS  PubMed  Google Scholar 

  43. Yan HX, Wu HP, Zhang HL, Ashton C, Tong C, Wu J, Qian QJ, Wang HY, Ying QL. DNA damage-induced sustained p53 activation contributes to inflammation-associated hepatocarcinogenesis in rats. Oncogene. 2013;32(38):4565-71.

  44. Chiu CT, Yeh TS, Hsu JC, Chen MF. Expression of Bcl-2 family modulated through p53-dependent pathway in human hepatocellular carcinoma. Dig Dis Sci. 2003;48(4):670-6.

  45. An J, Chen Y, Huang Z. Critical upstream signals of cytochrome c release induced by a novel Bcl-2 inhibitor. J Biol Chem. 2004;279(18):19133-40.

  46. Scorrano L, Korsmeyer SJ. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun. 2003;304(3):437-44.

  47. Cheng AC, Huang TC, Lai CS, Pan MH. Induction of apoptosis by luteolin through cleavage of Bcl-2 family in human leukemia HL-60 cells. Eur J Pharmacol. 2005;509(1):1-0.

  48. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292(5517):727-30.

  49. Teijido O, Djean L. Upregulation of Bcl2 inhibits apoptosis-driven BAX insertion but favors BAX re-localization in mitochondria. FEBS Lett. 2010;584(15):3305–10.

    Article  CAS  PubMed  Google Scholar 

  50. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001;15(22):2922–33.

    CAS  PubMed  Google Scholar 

  51. Arisan ED, Kutuk O, Tezil T, Bodur C, Telci D, Basaga H. Small inhibitor of Bcl-2, HA14-1, selectively enhanced the apoptotic effect of cisplatin by modulating Bcl-2 family members in MDA-MB-231 breast cancer cells. Breast Cancer Res Treat. 2010;119(2):271–81.

    Article  CAS  PubMed  Google Scholar 

  52. Zordoky BNM, El-Kadi AOS. Role of NF-κB in the regulation of cytochrome P450 enzymes. Curr Drug Metab. 2009;10(2):164–78.

    Article  CAS  PubMed  Google Scholar 

  53. Sauzay C, Petit A, Bourgeois AM, Barbare JC, Chauffert B, Galmiche A, Houessinon A. Alpha-foetoprotein (AFP): A multi-purpose marker in hepatocellular carcinoma. Clinica chimica acta. 2016;463:39-44.

  54. Han J, Van den Heuvel MC, Kusano H, De Jong KP, Gouw AS. How normal is the liver in which the inflammatory type hepatocellular adenoma develops? Int J Hepatol. 2012;2012.

  55. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515-40.

Download references

Acknowledgements

We appreciate the management of Egyptian Atomic Energy Authority for facilities provided to build up this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the manuscript. A. I. Nabeel donated the chromen-4-one new derivative and wrote the manuscript. S. Z. Mansourshared the laboratory and animal house for work. E. M. E. Mahdycontributed the idea and plan of work. H. A. El-Mezayen revision role. S. A. Mohamedapply the practical work and share the writing of manuscript.

Corresponding author

Correspondence to Asmaa I. Nabeel.

Ethics declarations

Ethics Approval and Consent to Participate

Animal dealing conditions and treatment were guided as per the National Institute of Health Guide for Animal and approved by the Institutional Animal Care and Use Committee (IACUC). Reference: National Research Council (US) Committee for the Update of the Guide. Guide for the care and use of laboratory animals. 8th ed. Washington, DC: National Academies Press, 2011.

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Summary

• Chromones are effective compounds as anti-inflammatory agents, and some researches pointed out the anti-tumor activity of chromones in vitro.

• The Ch compound is one of chromone derivatives, and we studied its anti-tumor activity in vivo. HCC was induced in rats DEN and treated with Ch compound.

• The treatment with Ch compound rebalances the biochemical markers to shift the body status away from HCC disturbance to the normal balance through blocking of TNF-α.

• Ch compound could be an effective agent for controlling the tumor status.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabeel, A.I., Mansour, S.Z., Mahdy, ES.M.E. et al. In vivo Study of a Newly Synthesized Chromen-4-one Derivative as an Antitumor Agent against HCC. J Gastrointest Canc 53, 980–989 (2022). https://doi.org/10.1007/s12029-021-00724-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-021-00724-9

Keywords

Navigation