Skip to main content

Advertisement

Log in

Cytotoxic and Apoptotic Effects of Celecoxib and Topotecan on AGS and HEK 293 Cell Lines

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

This study is aimed to assess the anti-cancer effects of Celecoxib and topotecan against Human Gastric cancer cell line (AGS) in comparison to the control in an in-vitro study.

Methods

In this experimental study, Celecoxib and topotecan was prepared at concentrations of 500, 250, 125, 62.5, 31.2, 15.6 and 7.8 mg/ml. The effect of celecoxib and topotecan separately and in mixed form were investigated on AGS and normal HEK cells. To investigate the cell survival, MTT method was used to study the pathway of apoptosis using flowcytometry and Caspase kits based on colorimetric. Finally, one-way ANOVA and t-test were used to analyze the data.

Results

The results of this study indicated that Celecoxib was cytotoxic against AGS and HEK cell lines. The topotecan indicated a significant cytotoxicity against AGS cells and was not toxic against HEK cell line. Our results indicated that Celecoxib and topotecan have synergist effects against AGS and HEK cell lines and were more effective than separate celecoxib or topotecan.

Conclusion

The mixture of clecoxib and topotecan was more effective than celecoxib and topotecan in separate form. Our results indicated that use mixed forms of treatments can cause excellent therapeutic effects and can cause less side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Przeglad gastroenterologiczny. 2019;14(1):26.

    CAS  PubMed  Google Scholar 

  2. Lyons K, Le LC, Pham YT-H, Borron C, Park JY, Tran CT, et al. Gastric cancer: epidemiology, biology, and prevention: a mini review. Eur J Cancer Prev. 2019;28(5):397–412.

    Article  PubMed  Google Scholar 

  3. Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol. 2020;18(3):534–42.

    Article  PubMed  Google Scholar 

  4. Esghaei M, Ghaffari H, Esboei BR, Tapeh ZE, Salim FB, Motevalian M. Evaluation of anticancer activity of Camellia sinensis in the Caco-2 colorectal cancer cell line. Asian Pacific journal of cancer prevention: APJCP. 2018;19(6):1697.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Orditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, Laterza MM, et al. Treatment of gastric cancer. World J Gastroenterol: WJG. 2014;20(7):1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: a review. J Cell Physiol. 2019;234(5):5683–99.

    Article  CAS  PubMed  Google Scholar 

  7. Luo M-X, Long B-B, Li F, Zhang C, Pan M-T, Huang Y-Q, et al. Roles of Cyclooxygenase-2 gene− 765G> C (rs20417) and− 1195G> a (rs689466) polymorphisms in gastric cancer: a systematic review and meta-analysis. Gene. 2019;685:125–35.

    Article  CAS  PubMed  Google Scholar 

  8. Wyatt GL, Crump LS, Young CM, Wessells VM, McQueen CM, Wall SW, et al. Cross-talk between SIM2s and NFκB regulates cyclooxygenase 2 expression in breast cancer. Breast Cancer Res. 2019;21(1):1–12.

    Article  Google Scholar 

  9. Chiang S-L, Velmurugan BK, Chung C-M, Lin S-H, Wang Z-H, Hua C-H, et al. Preventive effect of celecoxib use against cancer progression and occurrence of oral squamous cell carcinoma. Sci Rep. 2017;7(1):1–11.

    Article  Google Scholar 

  10. Arber N, Eagle CJ, Spicak J, Rácz I, Dite P, Hajer J, et al. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med. 2006;355(9):885–95.

    Article  CAS  PubMed  Google Scholar 

  11. Xie L, Yang R-T, Lv K, Zhou H-H, Li Z (2020) Comparison of Low Pre-Emptive Oral Doses of Celecoxib Versus Acetaminophen for Postoperative Pain Management After Third Molar Surgery: A Randomized Controlled Study. Journal of Oral and Maxillofacial Surgery 78 (1):75. e71–75. e76.

  12. Shackleford GM, Mahdi MY, Moats RA, Hawes D, Tran HC, Finlay JL, et al. Continuous and bolus intraventricular topotecan prolong survival in a mouse model of leptomeningeal medulloblastoma. PLoS One. 2019;14(1).

  13. Mootz AA, Peyton M, Yenerall P, Avila K, Huffman K, Haruki T, Papari-Zareei M, Stastny V, Girard L, McMillan E (2018) Identification of two small molecules with small cell lung cancer growth inhibition response profiles different from etoposide/topotecan. AACR,

    Google Scholar 

  14. Chabra A, Rahimi-Esboei B, Habibi E, Monadi T, Azadbakht M, Elmi T, et al. Effects of some natural products from fungal and herbal sources on Giardia lamblia in vivo. Parasitology. 2019;146(9):1188–98.

    Article  CAS  PubMed  Google Scholar 

  15. Marques FM, Figueira MM, Schmitt EFP, Kondratyuk TP, Endringer DC, Scherer R, et al. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology. 2019;27(2):281–9.

    Article  CAS  PubMed  Google Scholar 

  16. Liu B, Yan S, Qu L, Zhu J. Celecoxib enhances anticancer effect of cisplatin and induces anoikis in osteosarcoma via PI3K/Akt pathway. Cancer Cell Int. 2017;17(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rescifina A, Surdo E, Cardile V, Avola R, Graziano ACE, Stancanelli R, et al. Gemcitabine anticancer activity enhancement by water soluble celecoxib/sulfobutyl ether-β-cyclodextrin inclusion complex. Carbohydr Polym. 2019;206:792–800.

    Article  CAS  PubMed  Google Scholar 

  18. Bando T, Fujita S, Nagano N, Yoshikawa S, Yamanishi Y, Minami M, et al. Differential usage of COX-1 and COX-2 in prostaglandin production by mast cells and basophils. Biochemistry and biophysics reports. 2017;10:82–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Setiawati A. Celecoxib, a COX-2 selective inhibitor, induces cell cycle arrest at the G2/M phase in HeLa cervical cancer cells. Asian Pac J Cancer Prev. 2016;17(4):1655–9.

    Article  PubMed  Google Scholar 

  20. Kong Y, Gu C, Zhong D, Zhao X, Lin Q, Wang K, et al. Celecoxib antagonizes the cytotoxicity of oxaliplatin in human esophageal cancer cells by impairing the drug influx. Eur J Pharm Sci. 2016;81:137–48.

    Article  CAS  PubMed  Google Scholar 

  21. Elzoghby AO, Mostafa SK, Helmy MW, ElDemellawy MA, Sheweita SA. Multi-reservoir phospholipid shell encapsulating protamine nanocapsules for co-delivery of letrozole and celecoxib in breast cancer therapy. Pharm Res. 2017;34(9):1956–69.

    Article  CAS  PubMed  Google Scholar 

  22. Eccleston C, Cooper TE, Fisher E, Anderson B, Wilkinson NM. Non-steroidal anti-inflammatory drugs (NSAIDs) for chronic non-cancer pain in children and adolescents. Cochrane Database Syst Rev. 2017;8.

  23. Vallée A, Lecarpentier Y, Vallée J-N. Targeting the canonical WNT/β-catenin pathway in cancer treatment using non-steroidal anti-inflammatory drugs. Cells. 2019;8(7):726.

    Article  PubMed Central  Google Scholar 

  24. Boodram JN, Mcgregor IJ, Bruno PM, Cressey PB, Hemann MT, Suntharalingam K. Breast Cancer stem cell potent copper (II)–non-steroidal anti-inflammatory drug complexes. Angew Chem Int Ed. 2016;55(8):2845–50.

    Article  CAS  Google Scholar 

  25. Zhang P, He D, Song E, Jiang M, Song Y. Celecoxib enhances the sensitivity of non-small-cell lung cancer cells to radiation-induced apoptosis through downregulation of the Akt/mTOR signaling pathway and COX-2 expression. PLoS One. 2019;14(10).

  26. Venereo-Sanchez A, Simoneau M, Lanthier S, Chahal P, Bourget L, Ansorge S, et al. Process intensification for high yield production of influenza H1N1 gag virus-like particles using an inducible HEK-293 stable cell line. Vaccine. 2017;35(33):4220–8.

    Article  CAS  PubMed  Google Scholar 

  27. Lobas AA, Karpov DS, Kopylov AT, Solovyeva EM, Ivanov MV, Ilina IY, et al. Exome-based proteogenomics of HEK-293 human cell line: coding genomic variants identified at the level of shotgun proteome. Proteomics. 2016;16(14):1980–91.

    Article  CAS  PubMed  Google Scholar 

  28. Erfani N, Razmkhah M, Talei A, Pezeshki A, Doroudchi M, Monabati A, et al. Cytotoxic T lymphocyte antigen-4 promoter variants in breast cancer. Cancer Genet Cytogenet. 2006;165(2):114–20.

    Article  CAS  PubMed  Google Scholar 

  29. Sun Y, Rowehl LM, Huang L, Mackenzie GG, Vrankova K, Komninou D, et al. Phospho-ibuprofen (MDC-917) suppresses breast cancer growth: an effect controlled by the thioredoxin system. Breast Cancer Res. 2012;14(1):R20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schernhammer ES, Kang J-H, Chan AT, Michaud DS, Skinner HG, Giovannucci E, et al. A prospective study of aspirin use and the risk of pancreatic cancer in women. J Natl Cancer Inst. 2004;96(1):22–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is the result of the thesis of Mrs. Kimia Badalanloo with the grant No: 22510303962153.

Author information

Authors and Affiliations

Authors

Contributions

Study Concept and Design were done by T. N and R. A, Laboratory tests were done by T. N and K. B, Data were analyzed by T. N and R. A and the paper was written by T. N and K. B.

Corresponding author

Correspondence to Tahereh Naji.

Ethics declarations

Conflict of Interests

There was no conflict of interest.

Ethical Approval

All parts of current study were ethically approved by ethical committee of Islamic Azad University, Tehran branch, Iran (IR.IAU.PS.REC.1398.334).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badalanloo, K., Naji, T. & Ahmadi, R. Cytotoxic and Apoptotic Effects of Celecoxib and Topotecan on AGS and HEK 293 Cell Lines. J Gastrointest Canc 53, 99–104 (2022). https://doi.org/10.1007/s12029-020-00434-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-020-00434-8

Keywords

Navigation