Skip to main content

Advertisement

Log in

Expression Profile of miRNA-17-3p and miRNA-17-5p Genes in Gastric Cancer Patients with Helicobacter pylori Infection

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

The most common chronic bacterial infection is Helicobacter pylori. The connection between chronic H. pylori infection and gastric cancer is recognized. The early detection of gastric cancer improves survival. miRNAs regulate gene expression in eukaryotes by inhibiting mRNA translocation or degradation. The objective of this study was to compare the expression of miRNA-17-3p and miRNA-17-5p genes in gastric cancer patients with Helicobacter pylori infection.

Methods

Herein, 30 isolates were identified as H. pylori based on urease test, and 30 and 12 cases were isolated from gastric cancer patients and non-Helicobacter pylori cases as control, respectively. A peripheral blood sample was collected from patients. Analysis of total mRNA extracts from peripheral blood samples, for gene expression changes (miRNA-17-3p and miRNA-17-5p) by quantitative real-time polymerase chain reaction (qRT-PCR), was done.

Results

As said by the results, p values showed that expression levels of miRNA-17-3p and miRNA-17-5p were significantly higher in H. pylori-positive GC patients and H. pylori-positive non-GC patients with comparing by healthy controls. So, there was no significant difference between expression levels of miRNA-17-3p and miRNA-17-5p in H. pylori-positive GC patients and H. pylori-positive non-GC patients.

Conclusion

Considering our results, the high expression of miRNA-17-3p and miRNA-17-5p has a direct relationship with increased cell proliferation, inhibition of tumor cell apoptosis and tumor angiogenesis, in addition to miRNAs play an important role as biomarkers in helping for detection of the patient by H. pylori infection to become cancerous. Therefore, it can be used to make specific diagnostic kits and to treat patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berthenet E, Yahara K, Thorell K, Pascoe B, Meric G, Mikhail JM, et al. A GWAS on Helicobacter pylori strains points to genetic variants associated with gastric cancer risk. BMC Biol. 2018;16(1):84.

    Article  Google Scholar 

  2. Poddar U, Yachha SK. Helicobacter pylori in children: an Indian perspective. 2007.

    Google Scholar 

  3. Kao C-Y, Sheu B-S, Wu J-J. Helicobacter pylori infection: an overview of bacterial virulence factors and pathogenesis. Biom J. 2016;39(1):14–23.

    Google Scholar 

  4. Blaser MJ. Ecology of Helicobacter pylori in the human stomach. J Clin Invest. 1997;100(4):759–62.

    Article  CAS  Google Scholar 

  5. Abadi ATB. Helicobacter pylori infection in Iran: a new perspective. J Gastroenterol Hepatol Re. 2014;3(8):1181–5.

    Google Scholar 

  6. Hosseini E, Poursina F, Van de Wiele T, Safaei HG, Adibi P. Helicobacter pylori in Iran: a systematic review on the association of genotypes and gastroduodenal diseases. J Res Med Sci. 2012;17(3):280–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wroblewski LE, Peek RM, Wilson KT. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin Microbiol Rev. 2010;23(4):713–39.

    Article  CAS  Google Scholar 

  8. Haruma K, Komoto K, Kamada T, Ito M, Kitadai Y, Yoshihara M, et al. Helicobacter pylori infection is a major risk factor for gastric carcinoma in young patients. Scand J Gastroenterol. 2000;35(3):255–9.

    Article  CAS  Google Scholar 

  9. ABD ES, Mozafar M, Behtash F. Prevalence of Helicobacter pylori infection in subjects with gastric cancer surgery. 2008.

    Google Scholar 

  10. Pourhoseingholi MA, Vahedi M, Baghestani AR. Burden of gastrointestinal cancer in Asia; an overview. Gastroenterol Hepatol Bed Bench. 2015;8(1):19–27.

    PubMed  PubMed Central  Google Scholar 

  11. Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: Epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239.

    Article  CAS  Google Scholar 

  12. Movahedi M, Afsharfard A, Moradi A, Nasermoaddeli A, Khoshnevis J, Fattahi F, et al. Survival rate of gastric cancer in Iran. J Res Med Sci. 2009;14(6):367–73.

    PubMed  PubMed Central  Google Scholar 

  13. Anglicheau D, Muthukumar T, Suthanthiran M. MicroRNAs: Small RNAs with big effects. Transplantation. 2010;90(2):105.

    Article  CAS  Google Scholar 

  14. Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14.

    Article  CAS  Google Scholar 

  15. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.

    Article  Google Scholar 

  16. Inamura K, Ishikawa Y. MicroRNA in lung cancer: Novel biomarkers and potential tools for treatment. J Clin Med. 2016;5(3):36.

    Article  Google Scholar 

  17. Bobbili MR, Mader RM, Grillari J, Dellago H. OncomiR-17-5p: Alarm signal in cancer? Oncotarget. 2017;8(41):71206–22.

    Article  Google Scholar 

  18. Wang Y, Yin W, Lin Y, Yin K, Zhou L, Du Y, et al. Downregulated circulating microRNAs after surgery: Potential noninvasive biomarkers for diagnosis and prognosis of early breast cancer. Cell Death Dis. 2018;5(1):21.

    Google Scholar 

  19. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.

    Article  CAS  Google Scholar 

  20. Stolte M, Meining A. The updated Sydney system: Classification and grading of gastritis as the basis of diagnosis and treatment. Can J Gastroenterol Hepatol. 2001;15(9):591–8.

    CAS  Google Scholar 

  21. Ishiguro H, Kimura M, Takeyama H. Role of microRNAs in gastric cancer. World J Gastroenterol: WJG. 2014;20(19):5694.

    Article  CAS  Google Scholar 

  22. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834.

    Article  CAS  Google Scholar 

  23. Feng S, Qian X, Li H, Zhang X. Combinations of elevated tissue miRNA-17-92 cluster expression and serum prostate-specific antigen as potential diagnostic biomarkers for prostate cancer. Oncol Lett. 2017;14(6):6943–9.

    PubMed  PubMed Central  Google Scholar 

  24. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24(4):652–7.

    Article  CAS  Google Scholar 

  25. Brase JC, Wuttig D, Kuner R, Sültmann H. Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer. 2010;9(1):306.

    Article  CAS  Google Scholar 

  26. Li H, Wu Q, Li T, Liu C, Xue L, Ding J, et al. The miR-17-92 cluster as a potential biomarker for the early diagnosis of gastric cancer: Evidence and literature review. Oncotarget. 2017;8(28):45060–71.

    Article  Google Scholar 

  27. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102(7):1174–9.

    Article  CAS  Google Scholar 

  28. Hiyoshi Y, Watanabe M. MicroRNAs in gastrointestinal cancer: a novel biomarker and its clinical application. J Cancer Metastasis Treat. 2015;1:144–55.

    Article  CAS  Google Scholar 

  29. Yang X, Du WW, Li H, Liu F, Khorshidi A, Rutnam ZJ, et al. Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion. Nucleic Acids Res. 2013;41(21):9688–704.

    Article  CAS  Google Scholar 

  30. Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ, et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci. 2008;105(8):2889–94.

    Article  CAS  Google Scholar 

  31. Zhang X-Y, Zhang P-Y, Aboul-Soud MA. From inflammation to gastric cancer: Role of Helicobacter pylori. Oncol Lett. 2017;13(2):543–8.

    Article  CAS  Google Scholar 

  32. Noto JM, Peek RM Jr. The role of microRNAs in Helicobacter pylori pathogenesis and gastric carcinogenesis. Front Cell Infect Microbiol. 2012;1:21.

    Article  Google Scholar 

  33. Matsushima K, Isomoto H, Inoue N, Nakayama T, Hayashi T, Nakayama M, et al. MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int J Cancer. 2011;128(2):361–70.

    Article  CAS  Google Scholar 

  34. Li B-S, Zhao Y-L, Guo G, Li W, Zhu E-D, Luo X, et al. Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PLoS One. 2012;7(7):e41629.

    Article  CAS  Google Scholar 

  35. Libânio D, Dinis-Ribeiro M, Pimentel-Nunes P. Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions. World J Clin Oncol. 2015;6(5):111–32.

    Article  Google Scholar 

  36. Zhu X-L, Ren L-F, Wang H-P, Bai Z-T, Zhang L, Meng W-B, et al. Plasma microRNAs as potential new biomarkers for early detection of early gastric cancer. World J Gastroenterol. 2019;25(13):1580–91.

    Article  CAS  Google Scholar 

  37. Silwal P, Kim YS, Basu J, Jo E-K, editors. The roles of microRNAs in regulation of autophagy during bacterial infection, Seminars in cell & developmental biology: Elsevier; 2019.

  38. Tan X, Tang H, Bi J, Li N, Jia Y. MicroRNA-222-3p associated with Helicobacter pylori targets HIPK2 to promote cell proliferation, invasion, and inhibits apoptosis in gastric cancer. J Cell Biochem. 2018;119(7):5153–62.

    Article  CAS  Google Scholar 

  39. Chang H, Kim N, Park JH, Nam RH, Choi YJ, Lee HS, et al. Different microRNA expression levels in gastric cancer depending on Helicobacter pylori infection. Gut liver. 2015;9(2):188–96.

    Article  Google Scholar 

  40. Sun F, Ni Y, Zhu H, Fang J, Wang H, Xia J, et al. microRNA-29a-3p, up-regulated in human gastric cells and tissues with H. Pylori infection, promotes the migration of GES-1 cells via A20-mediated EMT pathway. Cell Physiol Biochem. 2018;51(3):1250–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the financial supports of the microbiology department, North Tehran branch, Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamideh Rouhani Nejad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayam, N., Nejad, H.R., Ashrafi, F. et al. Expression Profile of miRNA-17-3p and miRNA-17-5p Genes in Gastric Cancer Patients with Helicobacter pylori Infection. J Gastrointest Canc 52, 130–137 (2021). https://doi.org/10.1007/s12029-019-00319-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-019-00319-5

Keywords

Navigation