Skip to main content

Advertisement

Log in

A Study of Pipeline Drugs in Neuroendocrine Tumors

  • Original Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

Inhibition of neovessel development can stabilize tumor growth. A rapid in vitro method that can evaluate the effectiveness of anti-angiogenic drugs would aid in drug development. We tested a series of investigational agents to determine their ability to inhibit angiogenesis in our in vitro human angiogenesis model.

Methods

A total of 74 neuroendocrine tumors were tested with five therapeutic agents for anti-angiogenic activity. Angiogenic responses were assessed visually and the percent of tumor explants that developed an angiogenic response was determined. The extent of neovessel growth was rated using a validated semi-quantitative visual scale. Analysis of variance was used to compare treatment outcome results to control values for these angiogenic parameters.

Results

Vatalanib (2 × 10−5 M) and patupilone (1 × 10−8 M) were highly effective inhibitors of human tumor angiogenesis (mean overall angiogenic response for drug versus control 1.3 vs. 5.9 and 0.2 vs. 5.2, respectively) and were statistically significant at p <0.0001. Imatinib (2.5 × 10−6 M) and everolimus (1 × 10−8 M) were also effective (mean overall angiogenic response for drug versus control 2.2 vs. 5.9 and 4.5 vs. 5.9, respectively), and these were also statistically significant at p <0.0001. Pasireotide (1 × 10−8 M) had no effect on angiogenesis (mean overall angiogenic response for drug vs. control 5.5 vs. 5.2).

Conclusions

Significant differences in angiogenic response to test drugs were noted in this neuroendocrine patient population. In vitro screening of a large series of fresh human tumors may be a cost-effective way to select drugs for continued clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Folkman J. Tumor angiogenesis: a possible control point in tumor growth. Ann Intern Med. 1975;82:96–100.

    PubMed  CAS  Google Scholar 

  2. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29:15–8.

    PubMed  CAS  Google Scholar 

  3. Raza A, Frankin MJ, Dudek AZ. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol. 2010;85:593–8.

    Article  PubMed  CAS  Google Scholar 

  4. Abdollahi A, Folkman J. Evading tumor invasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat. 2010;13:16–28.

    Article  PubMed  CAS  Google Scholar 

  5. Kerbel RS. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapies agents. BioEssays. 1991;13:31–6.

    Article  PubMed  CAS  Google Scholar 

  6. Rak JW, St Croix B, Kerbel RS. Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anticancer Drugs. 1995;5:3–18.

    Article  Google Scholar 

  7. Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60:222–43.

    Article  PubMed  Google Scholar 

  8. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389–95.

    Article  PubMed  CAS  Google Scholar 

  9. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512–23.

    Article  PubMed  CAS  Google Scholar 

  10. Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St Croix B. Genes that distinguish physiological and pathological angiogenesis. Cell. 2007;11:539–54.

    CAS  Google Scholar 

  11. Tonini T, Rossi F, Caludio P. Molecular basis of angiogenesis and cancer. Oncogene. 2003;22:6549–56.

    Article  PubMed  CAS  Google Scholar 

  12. Geretti E, VanMeeteren LA, Shimizu A, Dudley AC, Claesson-Welsh L, Klagsbrun M. A mutated soluble neuropilin-2b domain antagonizes vascular endothelial growth factor bioactivity and inhibits tumor progression. Mol Cancer Res. 2010;8:1063–73.

    Article  PubMed  CAS  Google Scholar 

  13. Calzi SL, Neu MB, Shaw LC, Kielczewski JL, Moldovan NI, Grant MB. EPCs and pathological angiogenesis: when good cells go bad. Microvasc Res. 2010;79:207–16.

    Article  Google Scholar 

  14. Nikolinakos PG, Altorki N, Yankelevitz D, Tran HT, Yan S, Rajagopalan D, et al. Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Res. 2010;70:2171–9.

    Article  PubMed  CAS  Google Scholar 

  15. North American Neuroendocrine Tumor Society (NANETS) Guidelines (2010) Pancreas 39:705–818

    Google Scholar 

  16. Woltering EA, Cundiff J, Lyons J. Neuroendocrine tumors of the gastroenterpancreatic axis. In: Silberman H, Silberman AW, editors. Principles and practice of surgical oncology multidisciplinary approach to difficult problems. Philadelphia: Kluwer|Lippincott Williams and Wilkins; 2010. p. 769–99.

    Google Scholar 

  17. Woltering EA, Lewis JM, Maxwell JP, Frey DJ, Wang Y-Z, Rothermel J, et al. Development of a novel in vitro human tissue-based angiogenesis assay to evaluate the effect of anti-angiogenic drugs. Ann Surg. 2003;237:790–800.

    PubMed  Google Scholar 

  18. Lyons III JM, Anthony CT, Thomson JL, Woltering EA. A novel assay to assess the effectiveness of anti-angiogenic drugs in human breast cancer. Ann Surg Oncol. 2008;15:3407–14.

    Article  PubMed  Google Scholar 

  19. Demetri GD, Wang Y, Wehrle E, Racine A, Aariana N, Blanke CD, et al. Imatinib plasma levels are correlated with clinical benefit in patients with unresectable/metastatic gastrointestinal stromal tumors. J Clin Oncol. 2009;27:3141–7.

    Article  PubMed  CAS  Google Scholar 

  20. Ma P, Wang Y, van der Hoek J, Nedelman J, Schran H, Tran Y-L, et al. Pharmacokinetic–pharmacodynamic comparison of a novel multiligand somatostatin analog, SOM230, with octreotide in patients with acromegaly. Clin Pharmacol Ther. 2005;78:69–80.

    Article  PubMed  CAS  Google Scholar 

  21. O’Donnell A, Faivre S, Burris III HA, Rea D, Papadimitrakopoulou V, Shand N, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26:1588–95.

    Article  PubMed  Google Scholar 

  22. Jost LM, Gschwind H-P, Jalava T, Wany Y, Guenther C, Souppart C, et al. Metabolism and disposition of vatalanib (PTK787/ZK 222584) in cancer patients. Drug Metab Dispos. 2006;34:1817–28.

    Article  PubMed  CAS  Google Scholar 

  23. Rubin EH, Rothermel J, Tesfaye F, Chen T, Hubert M, Ho Y-Y, et al. Phase I dose-finding study of weekly single-agent patupilone in patients with advanced solid tumors. J Clin Oncol. 2005;23:9120–9.

    Article  PubMed  CAS  Google Scholar 

  24. Woltering EA, Watson JC, Alperin-Lea RC, Sharma C, Keenan E, Kurozawa K, et al. Somatostatin analogs: angiogenesis inhibitors with novel mechanisms of action. Invest New Drugs. 1997;3:265–72.

    Google Scholar 

  25. Watson JC, Redman JG, Meyers MO, Alperin-Lea RC, Gebhardt BM, Delcarpio JB, et al. Breast cancer increases initiation of angiogenesis without accelerating neovessel growth rate. Surgery. 1997;122:508–14.

    Article  PubMed  CAS  Google Scholar 

  26. Watson JC, Balster DA, Gebhardt BM, O’Dorisio TM, O’Dorisio MS, Espenan GD, et al. Growing vascular endothelial cells express somatostatin subtype 2 receptors. Br J Cancer. 2001;85:266–72.

    Article  PubMed  CAS  Google Scholar 

  27. Lewis JM, Anthony CT, Harrison LH, Ferguson TB, Heck HA, Rubenstein F, et al. Development of human cardiac tissue-based angiogenesis model. J Surg Res. 2006;135:34–7.

    Article  PubMed  CAS  Google Scholar 

  28. Gulec SA, Woltering EA. A new in vitro assay for human tumor angiogenesis: three-dimensional human tumor angiogenesis assay. Ann Surg Oncol. 2004;11(1):99–104.

    Article  PubMed  Google Scholar 

  29. Lyons J, Anthony CT, Woltering EA. The role of angiogenesis in neuroendocrine tumors. Endocrinol Metab Clin N Am. 2010;39:827–37.

    Article  Google Scholar 

  30. Awada A, Muno M, Hendisz A, Piccart M. New anticancer agents and therapeutic strategies in development for solid cancer. Expert Rev Anticancer Ther. 2004;4:53–60.

    Article  PubMed  CAS  Google Scholar 

  31. Tabatabai G, Stupp R. Primetime for antiangiogenic therapy. Curr Opin Neurol. 2009;22:639–44.

    Article  PubMed  Google Scholar 

  32. Tookman L, Roylance R. New drugs for breast cancer. Br Med Bull. 2010;96:111–29.

    Article  PubMed  Google Scholar 

  33. Griffiden AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev. 2000;52:237–68.

    Google Scholar 

  34. Wang C, Cao J, Qu J, Li Y, Peng B, Gu Y, et al. Recombinant vascular basement membrane derived multifunctional peptide blocks endothelial cell angiogenesis and neovascularization. J Cell Biochem. 2010;111:453–60.

    Article  PubMed  CAS  Google Scholar 

  35. Staton CA, Reed MWR, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol. 2009;90:195–221.

    Article  PubMed  CAS  Google Scholar 

  36. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172–87.

    Article  PubMed  CAS  Google Scholar 

  37. Chaundry A, Funa K, Oberg K. Expression of growth factor peptides and their receptors in neuroendocrine tumors of the digestive system. Acta Oncol. 1993;32:107–14.

    Article  Google Scholar 

  38. Yao JC, Zhang JX, Rashid A, Yeung S-C J, Szklaruk J, Hess K, et al. Clinical and in vitro studies of imatinib in advanced carcinoid tumors. Clin Cancer Res. 2007;13(1):234–40.

    Article  PubMed  CAS  Google Scholar 

  39. Sippel RS, Chen H. Carcinoid tumors. Surg Oncol Clin N Am. 2006;15(3):463–78.

    Article  PubMed  Google Scholar 

  40. Kulke MH. Clinical presentation and management of carcinoid tumors. Hematol Oncol Clin North Am. 2007;21(3):433–55.

    Article  PubMed  Google Scholar 

  41. Mozell E, Woltering EA, Stenzel P, Rosch J, O’Dorisio TM. Functional endocrine tumors of the pancreas: clinical presentation, diagnosis and treatment. Curr Probl Surg. 1990;27:309–86.

    Article  Google Scholar 

  42. Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27:4656–63.

    Article  PubMed  CAS  Google Scholar 

  43. Weckbecker G, Briner U, Lewis I, Bruns C. SOM230: a new somatostatin peptidomimetic with potent inhibitory effects on the growth hormone/insulin-like growth factor-I axis in rats, primates and dogs. Endocrinology. 2002;143:4123–30.

    Article  PubMed  CAS  Google Scholar 

  44. Ben-Shlomo A, Wawrowsky KA, Proekt WNM, Ren S-G, Taylor J, Culler MD, et al. Somatostatin receptor type 5 modulates somatostatin receptor type 2 regulation of adrenocorticotropin secretion. J Biol Chem. 2005;280:24011–21.

    Article  PubMed  CAS  Google Scholar 

  45. Reynolds AR, Hart IR, Watson AR, Welti JC, Silva RG, Robinson SD, et al. Stimulation of tumor growth and angiogenesis by low concentrations of GRD-mimetic integrin inhibitors. Nat Med. 2009;15:392–400.

    Article  PubMed  CAS  Google Scholar 

  46. Strosberg J, Kvols L. Antiproliferative effect of somatostatin analogs in gastroenteropancreatic neuroendocrine tumors. World J Gastroenterol. 2010;16:2963–70.

    Article  PubMed  CAS  Google Scholar 

  47. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–49.

    Article  PubMed  CAS  Google Scholar 

  48. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  PubMed  CAS  Google Scholar 

  49. Terris B, Scoazec JY, Rubbia L, Bregeaud L, Pepper MS, Ruszniewski P, et al. Expression of vascular endothelial growth factor in digestive neuroendocrine tumors. Histopathology. 1998;32:133–8.

    Article  PubMed  CAS  Google Scholar 

  50. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4:335–48.

    Article  PubMed  CAS  Google Scholar 

  51. Rubio-Viqueira B, Hidalgo M. Targeting mTOR for cancer treatment. Curr Opin Investig Drugs. 2006;7(6):501–12.

    PubMed  CAS  Google Scholar 

  52. Grozinsky-Glasberg S, Franchi G, Teng M, Leontiou CA, de Oliveira AR, Dalino P, et al. Octreotide and the mTOR inhibitor RAD001 (everolimus) block proliferation and interact with the Akt-m TOR-p70s6K pathway in a neuro-endocrine tumour cell line. Neuroendocrinology. 2008;87(3):168–81.

    Article  PubMed  CAS  Google Scholar 

  53. Yao JC, Phan TA, Chang DZ, Wolff RA, Hess K, Gupta S, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low-to-intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. 2008;26:4311–8.

    Article  PubMed  Google Scholar 

  54. Galmarini CM, Dumontet C. EPO-906 (Novartis). I Drugs. 2003;6(12):1182–7.

    PubMed  CAS  Google Scholar 

  55. Rothermel J, Wartmann M, Chen T, Hohneker J. EPO906 (Patupilone): a promising novel microtubule stabilizer. Semin Oncol. 2003;30:51–5.

    PubMed  CAS  Google Scholar 

  56. Lee JJ, Swain SM. The epothilones: translating from the laboratory to the clinic. Clin Cancer Res. 2008;14:1618–24.

    Article  PubMed  CAS  Google Scholar 

  57. Anthony LB, McCall J, Nunez J, O’Dorisio T, O’Dorisio S. An open-label phase II clinical trial of PTK787 in patients with progressive neuroendocrine cancer. J Clin Oncol. 2007;25:18S.

    Google Scholar 

  58. Anthony L, Carlisle T, Pommier R, Benson A, Rafferty T, Rothermel J. An open-label phase IIA trial evaluating the safety and efficacy of EPO906 as therapy in patients with metastatic carcinoid and other neuroendocrine tumors. J Clin Oncol. 2003;22:352 (ABST 1413).

    Google Scholar 

  59. Stalder MW, Anthony CT, Woltering EA. Metronomic dosing enhances the antiangiogenic effect of epothilone B. J Surg Res. 2009. doi:10.1016/j.jss.2009.12.001.

    PubMed  Google Scholar 

  60. Jung SP, Siegrist B, Hornick CA, Wang YZ, Wade MR, Anthony CT, et al. Effect of human recombinant endostatin protein on human angiogenesis. Angiogenesis. 2002;5:111–8.

    Article  PubMed  CAS  Google Scholar 

  61. Siegrist B, Anthony CT, Hornick C, Wade MR, Jung SJ, Wang YZ, et al. Effect of human angiostatin protein on human angiogenesis. Angiogenesis. 2004;6:233–40.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Novartis for the donation of the drugs used in this study. Special recognition is given to all the residents and staff of the departments of Surgery and Pathology at Louisiana State University Health Sciences Center in New Orleans for helping in collecting and processing the specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine T. Anthony.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anthony, C.T., Bastidas, J.G., Thomson, J.L. et al. A Study of Pipeline Drugs in Neuroendocrine Tumors. J Gastrointest Canc 43, 296–304 (2012). https://doi.org/10.1007/s12029-011-9286-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-011-9286-9

Keywords

Navigation