Skip to main content

Abstract

In recent years, a number of therapeutic agents have been tested in clinical trials and approved for neuroendocrine tumors (NETs), including an antiangiogenic agent (sunitinib) and an mTOR inhibitor (everolimus). Despite this clinical success, we still do not have biomarkers that can predict efficacy and provide clinically relevant information on potential resistance mechanisms against various antiangiogenic therapies (AA-Rxs). In order to address this important clinical challenge, there is an urgent need for pathologists to implement robust biomarker strategies to evaluate the expression of various members of the VEGF/VEGF receptor pathway and other relevant targets/biomarkers in human NET tissues. This will provide valuable biologic insights into pathologic angiogenesis, antiangiogenesis, and various resistance mechanisms in human NETs. Furthermore, selection of NET patients based on relevant biomarker or target expression in a given NET subtype will enable the current and emerging antiangiogenic therapies to be tailored to the right NET patients and will help achieve highest levels of clinical efficacy for these agents. An emerging approach to overcome resistance against AA-Rxs is concurrent targeting of VEGF and transcription factors or of multiple angiogenic pathways, such as VEGF and FGF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao JC, Phan A. Overcoming antiangiogenic resistance. Clin Cancer Res. 2011;17(16):5217–9.

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.

    Article  CAS  PubMed  Google Scholar 

  3. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004;56(4):549–80.

    Article  CAS  PubMed  Google Scholar 

  4. Yang XH, Man XY, Cai SQ, Yao YG, Bu ZY, Zheng M. Expression of VEGFR-2 on HaCaT cells is regulated by VEGF and plays an active role in mediating VEGF induced effects. Biochem Biophys Res Commun. 2006;349(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 1985;315(6015):115–22.

    Article  CAS  PubMed  Google Scholar 

  6. Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989;339(6219):58–61.

    Article  CAS  Google Scholar 

  7. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 1999;284(5415):808–12.

    Article  CAS  PubMed  Google Scholar 

  8. Christofori G, Naik P, Hanahan D. Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis. Mol Endocrinol. 1995;9(12):1760–70.

    CAS  PubMed  Google Scholar 

  9. Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell. 2002;1(2):193–202.

    Article  CAS  PubMed  Google Scholar 

  10. Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 2011;17(7):347–62.

    Article  CAS  PubMed  Google Scholar 

  11. Parangi S, O’Reilly M, Christofori G, Holmgren L, Grosfeld J, Folkman J, et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci U S A. 1996;93(5):2002–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8(4):299–309.

    Article  CAS  PubMed  Google Scholar 

  13. Pietras K, Hanahan D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol. 2005;23(5):939–52.

    Article  CAS  PubMed  Google Scholar 

  14. Mancuso MR, Davis R, Norberg SM, O’Brien S, Sennino B, Nakahara T, et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest. 2006;116(10):2610–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Terris B, Scoazec JY, Rubbia L, Bregeaud L, Pepper MS, Ruszniewski P, et al. Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology. 1998;32(2):133–8.

    Article  CAS  PubMed  Google Scholar 

  16. Marion-Audibert AM, Barel C, Gouysse G, Dumortier J, Pilleul F, Pourreyron C, et al. Low microvessel density is an unfavorable histoprognostic factor in pancreatic endocrine tumors. Gastroenterology. 2003;125(4):1094–104.

    Article  PubMed  Google Scholar 

  17. Couvelard A, O’Toole D, Turley H, Leek R, Sauvanet A, Degott C, et al. Microvascular density and hypoxia-inducible factor pathway in pancreatic endocrine tumours: negative correlation of microvascular density and VEGF expression with tumour progression. Br J Cancer. 2005;92(1):94–101.

    Article  CAS  PubMed  Google Scholar 

  18. Hansel DE, Rahman A, Hermans J, de Krijger RR, Ashfaq R, Yeo CJ, et al. Liver metastases arising from well-differentiated pancreatic endocrine neoplasms demonstrate increased VEGF-C expression. Mod Pathol. 2003;16(7):652–9.

    Article  PubMed  Google Scholar 

  19. Rubbia-Brandt L, Terris B, Giostra E, Dousset B, Morel P, Pepper MS. Lymphatic vessel density and vascular endothelial growth factor-C expression correlate with malignant behavior in human pancreatic endocrine tumors. Clin Cancer Res. 2004;10(20):6919–28.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Jia Z, Li Q, Wang L, Rashid A, Zhu Z, et al. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer. 2007;109(8):1478–86.

    Article  CAS  PubMed  Google Scholar 

  21. Scoazec JY. Angiogenesis in neuroendocrine tumors: therapeutic applications. Neuroendocrinology. 2013;97(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  22. Detjen KM, Rieke S, Deters A, Schulz P, Rexin A, Vollmer S, et al. Angiopoietin-2 promotes disease progression of neuroendocrine tumors. Clin Cancer Res. 2010;16(2):420–9.

    Article  CAS  PubMed  Google Scholar 

  23. Figueroa-Vega N, Diaz A, Adrados M, Alvarez-Escola C, Paniagua A, Aragones J, et al. The association of the angiopoietin/Tie-2 system with the development of metastasis and leukocyte migration in neuroendocrine tumors. Endocr Relat Cancer. 2010;17(4):897–908.

    Article  CAS  PubMed  Google Scholar 

  24. Srirajaskanthan R, Dancey G, Hackshaw A, Luong T, Caplin ME, Meyer T. Circulating angiopoietin-2 is elevated in patients with neuroendocrine tumours and correlates with disease burden and prognosis. Endocr Relat Cancer. 2009;16(3):967–76.

    Article  CAS  PubMed  Google Scholar 

  25. Fjallskog ML, Hessman O, Eriksson B, Janson ET. Upregulated expression of PDGF receptor beta in endocrine pancreatic tumors and metastases compared to normal endocrine pancreas. Acta Oncol. 2007;46(6):741–6.

    Article  PubMed  Google Scholar 

  26. Fjallskog ML, Lejonklou MH, Oberg KE, Eriksson BK, Janson ET. Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin Cancer Res. 2003;9(4):1469–73.

    PubMed  Google Scholar 

  27. Couvelard A, Hu J, Steers G, O’Toole D, Sauvanet A, Belghiti J, et al. Identification of potential therapeutic targets by gene-expression profiling in pancreatic endocrine tumors. Gastroenterology. 2006;131(5):1597–610.

    Article  CAS  PubMed  Google Scholar 

  28. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9(1):327–37.

    CAS  PubMed  Google Scholar 

  29. Kulke MH, Lenz HJ, Meropol NJ, Posey J, Ryan DP, Picus J, et al. Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol. 2008;26(20):3403–10.

    Article  CAS  PubMed  Google Scholar 

  30. Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):501–13.

    Article  CAS  PubMed  Google Scholar 

  31. Ahn HK, Choi JY, Kim KM, Kim H, Choi SH, Park SH, et al. Phase II study of pazopanib monotherapy in metastatic gastroenteropancreatic neuroendocrine tumours. Br J Cancer. 2013;109(6):1414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chan JA, Mayer RJ, Jackson N, Malinowski P, Regan E, Kulke MH. Phase I study of sorafenib in combination with everolimus (RAD001) in patients with advanced neuroendocrine tumors. Cancer Chemother Pharmacol. 2013;71(5):1241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Castellano D, Capdevila J, Sastre J, Alonso V, Llanos M, Garcia-Carbonero R, et al. Sorafenib and bevacizumab combination targeted therapy in advanced neuroendocrine tumour: a phase II study of Spanish Neuroendocrine Tumour Group (GETNE0801). Eur J Cancer. 2013;49(18):3780–7.

    Article  CAS  PubMed  Google Scholar 

  34. Chan JA, Stuart K, Earle CC, Clark JW, Bhargava P, Miksad R, et al. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J Clin Oncol. 2012;30(24):2963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Berruti A, Fazio N, Ferrero A, Brizzi MP, Volante M, Nobili E, et al. Bevacizumab plus octreotide and metronomic capecitabine in patients with metastatic well-to-moderately differentiated neuroendocrine tumors: the XELBEVOCT study. BMC Cancer. 2014;14:184.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yao VJ, Sennino B, Davis RB, et al. Combined anti- VEGFR and anti-PDGFR actions of sunitinib on blood vessels in preclinical tumor models. 18th EORTIC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, Prague; 2006.

    Google Scholar 

  37. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oberg K, Casanovas O, Castano JP, Chung D, Delle Fave G, Denefle P, et al. Molecular pathogenesis of neuroendocrine tumors: implications for current and future therapeutic approaches. Clin Cancer Res. 2013;19(11):2842–9.

    Article  CAS  Google Scholar 

  39. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6.

    Article  CAS  PubMed  Google Scholar 

  40. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin V, et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 2012;2(3):270–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia Z, Zhang J, Wei D, Wang L, Yuan P, Le X, et al. Molecular basis of the synergistic antiangiogenic activity of bevacizumab and mithramycin A. Cancer Res. 2007;67(10):4878–85.

    Article  CAS  PubMed  Google Scholar 

  43. Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP, et al. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther. 2009;8(7):1867–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Allen E, Walters IB, Hanahan D. Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin Cancer Res. 2011;17(16):5299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Abbreviations

PNET Pancreatic neuroendocrine tumor

mTOR Mammalian target of rapamycin

VEGF Vascular endothelial cell growth factor

VEGFR Vascular endothelial growth factor receptor

VEGFR1 Vascular endothelial growth factor receptor 1

VEGFR2 Vascular endothelial growth factor receptor 2

VEGFR3 Vascular endothelial growth factor receptor 3

VEGFA Vascular endothelial growth factor -A

VEGFB Vascular endothelial growth factor -B

VEGFC Vascular endothelial growth factor -C

VEGFD Vascular endothelial growth factor -D

AA-Rx Antiangiogenesis therapy

RTK Receptor tyrosine kinase

KDR Kinase insert domain receptor (VEGFR2)

PIGF Placental growth factor

NET Neuroendocrine tumor

RIP1-Tag2 Rat insulin promoter T antigen transgene

PET Pancreatic endocrine tumor

NEC Neuroendocrine carcinoma

MVD Microvascular density

HIF-1α Hypoxia-inducible factors-1α

Ang-2 Angiopoietin-2

Tie-2 Transmembrane vascular endothelial tyrosine kinase

GEP-NET Gastro-entero-pancreatic neuroendocrine tumor

IHC Immunohistochemistry

RT-PCR Reverse transcriptase polymerase chain reaction

PDGFR Platelet-derived growth factor receptor

PDGFR-beta Platelet-derived growth factor receptor-beta

c-KIT Tyrosine protein kinase

EGFR Epidermal growth factor receptor

TKI Tyrosine kinase inhibitor

RET Rearranged during transfection (receptor)

PDGFR-alpha Platelet-derived growth factor receptor-alpha

FGFR1 Fibroblast growth factor receptor 1

PFS Progression-free survival

NET Neuroendocrine tumor

AA Antiangiogenesis

FGF Fibroblast growth factor

BMDC Bone marrow-derived cell

c-Met The mesenchymal epithelial transition

HIF Hypoxia-inducible factor

RAF Rapidly accelerated fibrosarcoma (protein kinase family)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aejaz Nasir MD, MPhil, FCAP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nasir, A., Sheikh, U., Muhammad, J., Coppola, D. (2016). Pathologic Angiogenesis in Neuroendocrine Tumors. In: Nasir, A., Coppola, D. (eds) Neuroendocrine Tumors: Review of Pathology, Molecular and Therapeutic Advances. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3426-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3426-3_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3424-9

  • Online ISBN: 978-1-4939-3426-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics