Skip to main content

Advertisement

Log in

Cervical Ganglion Sympathectomy to Treat Cerebral Vasospasm in Subarachnoid Hemorrhage

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Delayed cerebral ischemia (DCI) is still a significant cause of death and disability after aneurysmal subarachnoid hemorrhage. Cerebral vasospasm represents one of the most reported mechanisms associated with DCI. The management of DCI-related vasospasm remains a significant challenge for clinicians; induced hypertension, intraarterial vasodilators, and/or intracranial vessel angioplasty—particularly in refractory or recurrent cases—are the most used therapies. Because an essential role in the pathophysiology of cerebral vasospasm has been attributed to the adrenergic sympathetic nerves, a “sympatholytic” intervention, consisting of a temporary interruption of the sympathetic pathways using local anesthetics, has been advocated to minimize the vascular narrowing and reverse the consequences of cerebral vasospasm on tissue perfusion. In this review, we have analyzed the existing literature on the block of the cervical ganglions, particularly the stellate ganglion, in managing refractory cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. These findings could help clinicians to understand the potential role of such intervention and to develop future interventional trials in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24:916–25.

    Article  CAS  PubMed  Google Scholar 

  2. Broderick JP, Brott TG, Duldner JE, Tomsick T, Leach A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke. 1994;25:1342–7.

    Article  CAS  PubMed  Google Scholar 

  3. Hijdra A, van Gijn J, Stefanko S, van Dongen KJ, Vermeulen M, van Crevel H. Delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: clinicoanatomic correlations. Neurology. 1986;36:329–33.

    Article  CAS  PubMed  Google Scholar 

  4. Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet. 2017;389:655–66.

    Article  PubMed  Google Scholar 

  5. Lindbohm JV, Kaprio J, Jousilahti P, Salomaa V, Sex KM. Smoking, and risk for subarachnoid hemorrhage. Stroke. 2016;47:1975–81.

    Article  PubMed  Google Scholar 

  6. Vora Y, Suarez-Almazor M, Steinke D, Martin M, Findlay J. Role of transcranial Doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery. 1999; 1237–47. Available from https://pubmed.ncbi.nlm.nih.gov/10371622/

  7. Dehdashti AR, Mermillod B, Rufenacht DA, Reverdin A, de Tribolet N. Does treatment modality of intracranial ruptured aneurysms influence the incidence of cerebral vasospasm and clinical outcome? Cerebrovasc Dis. 2004;17:53–60.

    Article  PubMed  Google Scholar 

  8. Weidauer S, Lanfermann H, Raabe A, Zanella F, Seifert V, Beck J. Impairment of cerebral perfusion and infarct patterns attributable to vasospasm after aneurysmal subarachnoid hemorrhage: a prospective MRI and DSA study. Stroke. 2007;38:1831–6.

    Article  PubMed  Google Scholar 

  9. Fabender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, Schütt S, et al. Endothelin-1 in subarachnoid hemorrhage: an acute-phase reactant produced by cerebrospinal fluid leukocytes. Stroke. 2000;31:2971–5.

    Article  Google Scholar 

  10. Ohkuma H, Manabe H, Tanaka M, Suzuki S. Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 2000;31:1621–7.

    Article  CAS  PubMed  Google Scholar 

  11. Friedrich V, Flores R, Muller A, Sehba FA. Luminal platelet aggregates in functional deficits in parenchymal vessels after subarachnoid hemorrhage. Brain Res. 2010;1354:179–87.

    Article  CAS  PubMed  Google Scholar 

  12. Budohoski KP, Guilfoyle M, Helmy A, Huuskonen T, Czosnyka M, Kirollos R, et al. The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2014;85:1343–53.

    Article  PubMed  Google Scholar 

  13. Velat GJ, Kimball MM, Mocco JD, Hoh BL. Vasospasm after aneurysmal subarachnoid hemorrhage: review of randomized controlled trials and meta-analyses in the literature. World Neurosurg. 2011;76:446–54.

    Article  PubMed  Google Scholar 

  14. Francoeur CL, Mayer SA. Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit Care. 2016;20:1–12.

    Article  Google Scholar 

  15. Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014;10:44–58.

    Article  CAS  PubMed  Google Scholar 

  16. Naredi S, Lambert G, Edén E, Zäll S, Runnerstam M, Rydenhag B, et al. Increased sympathetic nervous activity in patients with nontraumatic subarachnoid hemorrhage. Stroke. 2000;31:901–6.

    Article  CAS  PubMed  Google Scholar 

  17. Samagh N, Panda N, Gupta V, Bharti N, Tripathi M, Bhagat H, et al. Impact of stellate ganglion block in the management of cerebral vasospasm: a prospective interventional study. Neurol India. 2022;70:289.

    PubMed  Google Scholar 

  18. Jain V, Rath GP, Dash HH, Bithal PK, Chouhan RS, Suri A. Stellate ganglion block for treatment of cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage—a preliminary study. J Anaesthesiol Clin Pharmacol. 2011;27:516–21.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sánchez Arguiano J, Hernández-Hernández MA, Jáuregui Solórzano RA, Maldonado-Vega S, González Mandly A, Burón Mediavilla J. Stellate ganglion block as rescue therapy in refractory vasospasm after subarachnoid hemorrhage. Med Intensiva (Engl Ed). 2019;43(7):437–9. https://doi.org/10.1016/j.medine.2019.06.001.

    Article  PubMed  Google Scholar 

  20. Davis J, Ozcan MS, Kamdar JK, Shoaib M. Stellate ganglion block used to treat reversible cerebral vasoconstriction syndrome. Reg Anesth Pain Med. 2021;46:732–4.

    Article  PubMed  Google Scholar 

  21. Connolly ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43:1711–37.

    Article  PubMed  Google Scholar 

  22. Scremin OU. Cerebral vascular system—cap 39. In: The human nervous system. Academic Press; 2012. p. 1351–74.

    Chapter  Google Scholar 

  23. Falck B, Nielsen KC, Owman C. Adrenergic innervation of the pial circulation. Scand J Clin Lab Invest Suppl [Internet]. Scand J Clin Lab Invest Suppl; 1968; 102. Available from https://pubmed.ncbi.nlm.nih.gov/5714646/

  24. Treggiari MM, Romand JA, Martin JB, Reverdin A, Rüfenacht DA, de Tribolet N. Cervical sympathetic block to reverse delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage. Stroke. 2003;34:961–6.

    Article  PubMed  Google Scholar 

  25. Suzuki J, Iwabuchi T, Hori S. Cervical sympathectomy for cerebral vasospasm after aneurysm rupture. Neurol Med Chir (Tokyo). 1975;15(1):41–50.

    Article  PubMed  Google Scholar 

  26. Sato S, Suzuki J. Anatomical mapping of the cerebral nervi vasorum in the human brain. J Neurosurg. 1975;43:559–68.

    Article  CAS  PubMed  Google Scholar 

  27. Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985) [Internet]. J Appl Physiol (1985); 2006 [cited 2022 Dec 1]; 100: 1059–64. Available from https://pubmed.ncbi.nlm.nih.gov/16467392/

  28. Cohen ZVI, Bonvento G, Lacombe P, Hamel E. Serotonin in the regulation of brain microcirculation. Prog Neurobiol. 1996;50:335–62.

    Article  CAS  PubMed  Google Scholar 

  29. Sato T, Sato S, Suzuki J. Correlation with superior cervical sympathetic ganglion and sympathetic nerve innervation of intracranial artery-electron microscopical studies. Brain Res. 1980;188:33–41.

    Article  CAS  PubMed  Google Scholar 

  30. Gray H. Cervical sympathetic trunk. In: Gray’s anatomy: the anatomical basis of clinical practice. 41th ed. Elsevier; 2016. p. 468–9

  31. Cramer GD. The cervical region. Clinical anatomy of the spine, spinal cord, and ANS. Mosby; 2014. p. 135–209.

  32. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev Physiol Rev. 1959;39:183–238.

    Article  CAS  PubMed  Google Scholar 

  33. Kiray A, Arman C, Naderi S, Güvencer M, Korman E. Surgical anatomy of the cervical sympathetic trunk. Clin Anat. 2005;18:179–85.

    Article  CAS  PubMed  Google Scholar 

  34. Kattar N, Flowers T. Anatomy, Head and Neck, Sympathetic Chain. StatPearls [Internet]. StatPearls Publishing; 2022 [cited 2022 Dec 2]; Available from https://www.ncbi.nlm.nih.gov/books/NBK563206/

  35. Mitsuoka K, Kikutani T, Sato I. Morphological relationship between the superior cervical ganglion and cervical nerves in Japanese cadaver donors. Brain Behav. 2016;7:e00619.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Arbab MAR, Wiklund L, Delgado T, Svendgaard NA. Stellate ganglion innervation of the vertebro-basilar arterial system demonstrated in the rat with anterograde and retrograde WGA-HRP tracing. Brain Res. 1988;445:175–80.

    Article  CAS  PubMed  Google Scholar 

  37. Bleys RLAW, Cowen T. Innervation of cerebral blood vessels: morphology, plasticity, age-related, and Alzheimer’s disease-related neurodegeneration. Microsc Res Tech. 2001;53:106–18.

    Article  CAS  PubMed  Google Scholar 

  38. Cowen T, Alafaci C, Crockard HA, Burnstock G. 5-HT-containing nerves to major cerebral arteries of the gerbil originate in the superior cervical ganglia. Brain Res. 1986;384:51–9.

    Article  CAS  PubMed  Google Scholar 

  39. Elias M. Review article cervical sympathetic and stellate ganglion blocks. Pain Phys. 2000;3:294–304.

    Article  CAS  Google Scholar 

  40. Shenkin HA. Cervical sympathectomy on patients with occlusive cerebrovascular disease. Arch Surg. 1969;98:317–20.

    Article  CAS  PubMed  Google Scholar 

  41. Gliniecki R, Gliniecki R. Stellate ganglion block. In: Pain medicine: an essential review. Cham: Springer; 2017. p. 285–7.

  42. Piraccini E, Munakomi S, Chang K-V. Stellate ganglion blocks. In: Pain medicine: an essential review. StatPearls Publishing; 2022. p. 285–7.

  43. Hu N, Wu Y, Chen BZ, Han JF, Zhou MT. Protective effect of stellate ganglion block on delayed cerebral vasospasm in an experimental rat model of subarachnoid hemorrhage. Brain Res. 2014;1585:63–71.

    Article  CAS  PubMed  Google Scholar 

  44. Wulf H, Maier C. Komplikation und nebenwirkungen bei blockaden des ganglion stellatum. Ergebnisse einer fragebogenerhebung [Complications and side effects of stellate ganglion blockade. Results of a questionnaire survey]. Anaesthesist. 1992;41:146–51.

    CAS  PubMed  Google Scholar 

  45. Goel V, Patwardhan AM, Ibrahim M, Howe CL, Schultz DM, Shankar H. Complications associated with stellate ganglion nerve block: a systematic review. Reg Anesth Pain Med. 2019;44:669–78.

    Article  Google Scholar 

  46. Song JG, Hwang GS, Eun HL, Jeong GL, Lee C, Pyung HP, et al. Effects of bilateral stellate ganglion block on autonomic cardiovascular regulation. Circ J. 2009;73:1909–13.

    Article  PubMed  Google Scholar 

  47. Faleiros ATDS, Maffei FHDA, Resende LADL. Effects of cervical sympathectomy on vasospasm induced by meningeal haemorrhage in rabbits. Arq Neuropsiquiatr. 2006;64:572–4.

    Article  Google Scholar 

  48. He CJ, Shan O, Liu GD, Nie HX, Luo YR, Feng YP. Effect of cervical sympathetic block on cerebral vasospasm after subarachnoid hemorrhage in rabbits. Acta Cir Bras. 2013;28:89–93.

    Article  Google Scholar 

  49. Gupta MM, Bithal PK, Dash HH, Chaturvedi A, Mahajan RP. Effects of stellate ganglion block on cerebral haemodynamics as assessed by transcranial Doppler ultrasonography. Br J Anaesth. 2005;95:669–73. https://doi.org/10.1093/bja/aei230.

    Article  CAS  PubMed  Google Scholar 

  50. Prabhakar H, Jain V, Rath GP, Bithal PK, Dash HH. Stellate ganglion block as alternative to intrathecal papaverine in relieving vasospasm due to subarachnoid hemorrhage. Anesth Analg. 2007;104:1311–2.

    Article  PubMed  Google Scholar 

  51. Bindra A, Prabhakar H, Singh GP. Stellate ganglion block for relieving vasospasms after coil embolization of basilar tip aneurysms. J Neurosurg Anesthesiol. 2011;23:379.

    Article  PubMed  Google Scholar 

  52. Wendel C, Scheibe R, Wagner S, Tangemann W, Henkes H, Ganslandt O, et al. Decrease of blood flow velocity in the middle cerebral artery after stellate ganglion block following aneurysmal subarachnoid hemorrhage: a potential vasospasm treatment? J Neurosurg. 2019;133:773–9.

    Article  Google Scholar 

  53. Bortolato A, Simonato D, Feltracco P, Munari M. Continuous stellate ganglion block in delayed cerebral ischemia: a possible supplementary approach to traditional therapy? J Anaesthesiol Clin Pharmacol. 2020;36:265–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bains NK, Nada A, Kumar N, Siddiq F, Gomez CR, Qureshi AI. Effect of percutaneous inferior sympathetic ganglion block on medium-sized intracranial artery diameters on cerebral angiography. World Neurosurg. 2022;167:e1402–6.

    Article  PubMed  Google Scholar 

  55. Nie Y, Song R, Chen W, Qin Z, Zhang J, Tang J. Effects of stellate ganglion block on cerebrovascular vasodilation in elderly patients and patients with subarachnoid haemorrhage. Br J Anaesth. 2016;117:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kang CK, Oh ST, Chung RK, Lee H, Park CA, Kim YB, et al. Effect of stellate ganglion block on the cerebrovascular system: magnetic resonance angiography study. Anesthesiology. 2010;113:936–44.

    Article  PubMed  Google Scholar 

  57. Pileggi M, Mosimann PJ, Isalberti M, Piechowiak EI, Merlani P, Reinert M, et al. Stellate ganglion block combined with intra-arterial treatment: a “one-stop shop” for cerebral vasospasm after aneurysmal subarachnoid hemorrhage—a pilot study. Neuroradiol. 2021;63:1701–8.

    Article  Google Scholar 

  58. Zhang J, Nie Y, Pang Q, Zhang X, Wang Q, Tang J. Effects of stellate ganglion block on early brain injury in patients with subarachnoid hemorrhage: a randomised control trial. BMC Anesthesiol. 2021;21:23. https://doi.org/10.1186/s12871-020-01215-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hughes JT, Schianchi PM. Cerebral artery spasm. A histological study at necropsy of the blood vessels in cases of subarachnoid hemorrhage. J Neurosurg. 1978;48:515–25.

    Article  CAS  PubMed  Google Scholar 

  60. Bombardieri AM, Heifets BD, Treggiari M, Albers GW, Steinberg GK, Heit JJ. Cervical sympathectomy to treat cerebral vasospasm: a scoping review. Reg Anesth Pain Med. 2022. https://doi.org/10.1136/rapm-2022-103999.

    Article  PubMed  Google Scholar 

  61. Lipov E, Gluncic V, Lukić IK, Candido K. How does stellate ganglion block alleviate immunologically-linked disorders? Med Hypotheses 2022; 144. Available from https://pubmed.ncbi.nlm.nih.gov/32758866/.

  62. Li TT, Wan Q, Zhang X, Xiao Y, Sun LY, Zhang YR, et al. Stellate ganglion block reduces inflammation and improves neurological function in diabetic rats during ischemic stroke. Neural Regen Res. 2022;17:1991–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Andereggen L, Beck J, Z’Graggen WJ, Schroth G, Andres RH, Murek M, et al. Feasibility and safety of repeat instant endovascular interventions in patients with refractory cerebral vasospasms. AJNR Am J Neuroradiol. 2017;38:561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jing L, Wu Y, Liang F, Jian M, Bai Y, Wang Y, et al. Effect of early stellate ganglion block in cerebral vasospasm after aneurysmal subarachnoid hemorrhage (BLOCK-CVS): study protocol for a randomized controlled trial. Trials. 2022;23:1–11.

    Article  Google Scholar 

Download references

Acknowledgements

Authorship requirements have been met and the final manuscript was approved by all the authors. Figure 1 was created with BioRender.com.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MS: drew the figure, helped to design the study and wrote sections of the final article; EGB: helped to design the study and wrote sections of the final article; FST: helped to design the study and wrote sections of the final article. All the authors reviewed the article for intellectual content and approve the final manuscript.

Corresponding author

Correspondence to Michele Salvagno.

Ethics declarations

Conflict of interest

None.

Ethical Approval/Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvagno, M., Gouvea Bogossian, E., Halenarova, K. et al. Cervical Ganglion Sympathectomy to Treat Cerebral Vasospasm in Subarachnoid Hemorrhage. Neurocrit Care 39, 241–249 (2023). https://doi.org/10.1007/s12028-023-01694-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-023-01694-5

Keywords

Navigation