Skip to main content

Advertisement

Log in

The Limited Impact of Current Therapeutic Interventions on Cerebrovascular Reactivity in Traumatic Brain Injury: A Narrative Overview

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Current intensive care unit (ICU) treatment strategies for traumatic brain injury (TBI) care focus on intracranial pressure (ICP)- and cerebral perfusion pressure (CPP)-directed therapeutics, dictated by guidelines. Impaired cerebrovascular reactivity in moderate/severe TBI is emerging as a major associate with poor outcome and appears to dominate the landscape of physiologic derangement over the course of a patient’s ICU stay. Within this article, we review the literature on the known drivers of impaired cerebrovascular reactivity in adult TBI, highlight the current knowledge surrounding the impact of guideline treatment strategies on continuously monitored cerebrovascular reactivity, and discuss current treatment paradigms for impaired reactivity. Finally, we touch on the areas of future research, as we strive to develop specific therapeutics for impaired cerebrovascular reactivity in TBI. There exists limited literature to suggest advanced age, intracranial injury patterns of diffuse injury, and sustained ICP elevations may drive impaired cerebrovascular reactivity. To date, the literature suggests there is a limited impact of such ICP/CPP guideline-based therapies on cerebrovascular reactivity, with large portions of a given patients ICU period spent with impaired cerebrovascular reactivity. Emerging treatment paradigms focus on the targeting individualized CPP and ICP thresholds based on cerebrovascular reactivity, without directly targeting the pathways involved in its dysfunction. Further work involved in uncovering the molecular pathways involved in impaired cerebrovascular reactivity is required, so that we can develop therapeutics directed at its prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, et al. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care : a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1189–209.

    Article  PubMed  Google Scholar 

  2. Okonkwo DO, Shutter LA, Moore C, Temkin NR, Puccio AM, Madden CJ, et al. Brain oxygen optimization in severe traumatic brain injury phase-II: a phase II randomized trial. Crit Care Med. 2017;45:1907–14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury. Neurosurgery. 2017;80:6–15.

    Article  PubMed  Google Scholar 

  4. Hawryluk GWJ, Aguilera S, Buki A, Bulger E, Citerio G, Cooper DJ, et al. A management algorithm for patients with intracranial pressure monitoring: the Seattle international severe traumatic brain injury consensus conference (SIBICC). Intensive Care Med. 2019;45:1783–94.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Timofeev I, Carpenter KLH, Nortje J, Al-Rawi PG, O’Connell MT, Czosnyka M, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134:484–94.

    Article  PubMed  Google Scholar 

  6. Donnelly J, Czosnyka M, Adams H, Cardim D, Kolias AG, Zeiler FA, et al. Twenty-five years of intracranial pressure monitoring after severe traumatic brain injury: a retrospective. Single-center analysis. Neurosurgery. 2019;85:E75–82.

    Article  PubMed  Google Scholar 

  7. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7 ; discussion 17–19.

    Article  CAS  PubMed  Google Scholar 

  8. Zeiler FA, Donnelly J, Calviello L, Smielewski P, Menon DK, Czosnyka M. Pressure autoregulation measurement techniques in adult traumatic brain injury, part II: a scoping review of continuous methods. J Neurotrauma. 2017;34:3224–37.

    Article  PubMed  Google Scholar 

  9. Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–66.

    Article  CAS  PubMed  Google Scholar 

  10. Flechet M, Meyfroidt G, Piper I, Citerio G, Chambers I, Jones PA, et al. Visualizing cerebrovascular autoregulation insults and their association with outcome in adult and paediatric traumatic brain injury. Acta Neurochir Suppl. 2018;126:291–5.

    Article  PubMed  Google Scholar 

  11. Güiza F, Depreitere B, Piper I, Citerio G, Chambers I, Jones PA, et al. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med. 2015;41:1067–76.

    Article  PubMed  Google Scholar 

  12. Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, et al. Can optimal cerebral perfusion pressure in patients with severe traumatic brain injury be calculated based on minute-by-minute data monitoring? Acta Neurochir Suppl. 2016;122:245–8.

    Article  PubMed  Google Scholar 

  13. Zeiler FA, Ercole A, Cabeleira M, Zoerle T, Stocchetti N, Menon DK, et al. Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study. Acta Neurochir (Wien). 2019;161:1217–27.

    Article  Google Scholar 

  14. Zeiler FA, Ercole A, Beqiri E, Cabeleira M, Thelin EP, Stocchetti N, et al. Association between cerebrovascular reactivity monitoring and mortality is preserved when adjusting for baseline admission characteristics in adult TBI: a CENTER-TBI Study. J Neurotrauma. 2019.

  15. Zeiler FA, Donnelly J, Smielewski P, Menon DK, Hutchinson PJ, Czosnyka M. Critical thresholds of intracranial pressure-derived continuous cerebrovascular reactivity indices for outcome prediction in noncraniectomized patients with traumatic brain injury. J Neurotrauma. 2018;35:1107–15.

    Article  PubMed  Google Scholar 

  16. Zeiler FA, Ercole A, Cabeleira M, Carbonara M, Stocchetti N, Menon DK, et al. Comparison of performance of different optimal cerebral perfusion pressure parameters for outcome prediction in adult traumatic brain injury: a collaborative European neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI) study. J Neurotrauma. 2019;36:1505–17.

    Article  PubMed  Google Scholar 

  17. Czosnyka M, Miller C. Participants in the international multidisciplinary consensus conference on multimodality monitoring. Monitoring of cerebral autoregulation. Neurocrit Care. 2014;21(2):95–102.

    Article  Google Scholar 

  18. Svedung Wettervik T, Howells T, Enblad P, Lewén A. Temporal neurophysiological dynamics in traumatic brain injury: role of pressure reactivity and optimal cerebral perfusion pressure for predicting outcome. J Neurotrauma. 2019;36:1818–27.

    Article  PubMed  Google Scholar 

  19. Lang EW, Kasprowicz M, Smielewski P, Santos E, Pickard J, Czosnyka M. Short pressure reactivity index versus long pressure reactivity index in the management of traumatic brain injury. J Neurosurg. 2015;122:588–94.

    Article  PubMed  Google Scholar 

  20. Brady KM, Lee JK, Kibler KK, Easley RB, Koehler RC, Shaffner DH. Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods. Stroke. 2008;39:2531–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zeiler FA, Donnelly J, Calviello L, Lee JK, Smielewski P, Brady K, et al. Validation of pressure reactivity and pulse amplitude indices against the lower limit of autoregulation, part I: experimental intracranial hypertension. J Neurotrauma. 2018;35:2803–11.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zeiler FA, Lee JK, Smielewski P, Czosnyka M, Brady K. Validation of intracranial pressure-derived cerebrovascular reactivity indices against the lower limit of autoregulation, part II: experimental model of arterial hypotension. J Neurotrauma. 2018;35:2812–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.

    Article  PubMed  Google Scholar 

  24. Aries MJH, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.

    Article  PubMed  Google Scholar 

  25. Needham E, McFadyen C, Newcombe V, Synnot AJ, Czosnyka M, Menon D. Cerebral perfusion pressure targets individualized to pressure-reactivity index in moderate to severe traumatic brain injury: a systematic review. J Neurotrauma. 2017;34:963–70.

    Article  PubMed  Google Scholar 

  26. Beqiri E, Smielewski P, Robba C, Czosnyka M, Cabeleira MT, Tas J, et al. Feasibility of individualised severe traumatic brain injury management using an automated assessment of optimal cerebral perfusion pressure: the COGiTATE phase II study protocol. BMJ Open. 2019;9:e030727.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zeiler FA, Ercole A, Beqiri E, Cabeleira M, Aries M, Zoerle T, et al. Cerebrovascular reactivity is not associated with therapeutic intensity in adult traumatic brain injury: a CENTER-TBI analysis. Acta Neurochir. 2019;161:1955–64.

    Article  PubMed  Google Scholar 

  28. Zeiler FA, Beqiri E, Cabeleira M, Hutchinson PJ, Stocchetti N, Menon DK, et al. Brain tissue oxygen and cerebrovascular reactivity in traumatic brain injury: a CENTER-TBI exploratory analysis of insult Burden. J Neurotrauma. 2020; (Epub Ahead of Print).

  29. Budohoski KP, Zweifel C, Kasprowicz M, Sorrentino E, Diedler J, Brady KM, et al. What comes first? The dynamics of cerebral oxygenation and blood flow in response to changes in arterial pressure and intracranial pressure after head injury. Br J Anaesth. 2012;108:89–99.

    Article  CAS  PubMed  Google Scholar 

  30. Bennis FC, Teeuwen B, Zeiler FA, Elting JW, van der Naalt J, Bonizzi P, et al. Improving prediction of favourable outcome after 6 months in patients with severe traumatic brain injury using physiological cerebral parameters in a multivariable logistic regression model. Neurocrit Care. 2020.

  31. Zeiler FA, McFadyen C, Newcombe V, Synnot A, Donoghue EL, Ripatti S, et al. Genetic influences on patient oriented outcomes in TBI: a living systematic review of non-APOE single nucleotide polymorphisms. J Neurotrauma. 2018.

  32. McFadyen CA, Zeiler FA, Newcombe V, Synnot A, Steyerberg E, Gruen RL, et al. Apolipoprotein E4 polymorphism and outcomes from traumatic brain injury: a living systematic review and meta-analysis. J Neurotrauma. 2019.

  33. Zeiler FA, Thelin EP, Donnelly J, Stevens AR, Smielewski P, Czosnyka M, et al. Genetic drivers of cerebral blood flow dysfunction in TBI: a speculative synthesis. Nat Rev Neurol. 2019;15:25–39.

    Article  CAS  PubMed  Google Scholar 

  34. Czosnyka M, Balestreri M, Steiner L, Smielewski P, Hutchinson PJ, Matta B, et al. Age, intracranial pressure, autoregulation, and outcome after brain trauma. J Neurosurg. 2005;102:450–4.

    Article  PubMed  Google Scholar 

  35. Hiler M, Czosnyka M, Hutchinson P, Balestreri M, Smielewski P, Matta B, et al. Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J Neurosurg. 2006;104:731–7.

    Article  PubMed  Google Scholar 

  36. Zeiler FA, Donnelly J, Nourallah B, Thelin EP, Calviello L, Smielewski P, et al. Intracranial and extracranial injury burden as drivers of impaired cerebrovascular reactivity in traumatic brain injury. J Neurotrauma. 2018;35:1569–77.

    Article  PubMed  Google Scholar 

  37. Zeiler FA, Mathieu F, Monteiro M, Glocker B, Ercole A, Beqiri E, et al. Diffuse intra-cranial injury patterns are associated with impaired cerebrovascular reactivity in adult traumatic brain injury: a CENTER-TBI validation study. J Neurotrauma. 2020 (Epub Ahead of Print).

  38. Mathieu F, Zeiler FA, Whitehouse DP, Das T, Ercole A, Smielewski P, et al. Relationship between measures of cerebrovascular reactivity and intracranial lesion progression in acute TBI patients: an exploratory analysis. Neurocrit Care. 2019.

  39. Mathieu F, Zeiler FA, Ercole A, Monteiro MAB, Kamnitsas K, Glocker B, et al. Relationship between measures of cerebrovascular reactivity and intracranial lesion progression in acute TBI patients: a CENTER-TBI study. J Neurotrauma. 2020.

  40. Donnelly J, Smielewski P, Adams H, Zeiler FA, Cardim D, Liu X, et al. Observations on the cerebral effects of refractory intracranial hypertension after severe traumatic brain injury. Neurocrit Care. 2019;85(1):E75–82.

    Google Scholar 

  41. Dias C, Silva MJ, Pereira E, Silva S, Cerejo A, Smielewski P, et al. Post-traumatic multimodal brain monitoring: response to hypertonic saline. J Neurotrauma. 2014;31:1872–80.

    Article  PubMed  Google Scholar 

  42. Tang S-C, Lin R-J, Shieh J-S, Wu A-Y, Lai D-M, Huang S-J, et al. Effect of mannitol on cerebrovascular pressure reactivity in patients with intracranial hypertension. J Formos Med Assoc. 2015;114:842–8.

    Article  CAS  PubMed  Google Scholar 

  43. Weersink CSA, Aries MJH, Dias C, Liu MX, Kolias AG, Donnelly J, et al. Clinical and physiological events that contribute to the success rate of finding “optimal” cerebral perfusion pressure in severe brain trauma patients. Crit Care Med. 2015;43:1952–63.

    Article  PubMed  Google Scholar 

  44. Chesnut R, Aguilera S, Buki A, Bulger E, Citerio G, Cooper DJ, et al. A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle international severe traumatic brain injury consensus conference (SIBICC). Intensive Care Med. 2020.

  45. Timofeev I, Czosnyka M, Nortje J, Smielewski P, Kirkpatrick P, Gupta A, et al. Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation following traumatic brain injury. J Neurosurg. 2008;108:66–73.

    Article  PubMed  Google Scholar 

  46. Zeiler FA, Aries M, Cabeleira M, van Essen T, Stocchetti N, Menon D, et al. Statistical cerebrovascular reactivity signal properties after secondary decompressive craniectomy in traumatic brain injury: a CENTER-TBI pilot analysis. J Neurotrauma. 2020.

  47. Newell DW, Weber JP, Watson R, Aaslid R, Winn HR. Effect of transient moderate hyperventilation on dynamic cerebral autoregulation after severe head injury. Neurosurgery. 1996;39:35–43 ; discussion 43–44.

    Article  CAS  PubMed  Google Scholar 

  48. Svedung Wettervik T, Howells T, Hillered L, Nilsson P, Engquist H, Lewén A, et al. Mild hyperventilation in traumatic brain injury-relation to cerebral energy metabolism, pressure autoregulation, and clinical outcome. World Neurosurg. 2020;133:e567–75.

    Article  PubMed  Google Scholar 

  49. Coles JP, Fryer TD, Coleman MR, Smielewski P, Gupta AK, Minhas PS, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35:568–78.

    Article  CAS  PubMed  Google Scholar 

  50. Lavinio A, Timofeev I, Nortje J, Outtrim J, Smielewski P, Gupta A, et al. Cerebrovascular reactivity during hypothermia and rewarming. Br J Anaesth. 2007;99:237–44.

    Article  CAS  PubMed  Google Scholar 

  51. Brain Oxygen Optimization in Severe TBI, Phase 3—full text view—ClinicalTrials.gov [Internet]. [cited 2020 May 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT03754114.

  52. Brain Oxygen Neuromonitoring in Australia and New Zealand Assessment (BONANZA) Trial [Internet]. Monash University. [cited 2020 May 4]. Available from https://research.monash.edu/en/projects/brain-oxygen-neuromonitoring-in-australia-and-new-zealand-assessm.

  53. Lazaridis C, DeSantis SM, Smielewski P, Menon DK, Hutchinson P, Pickard JD, et al. Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. J Neurosurg. 2014;120:893–900.

    Article  PubMed  Google Scholar 

  54. Zeiler FA, Ercole A, Cabeleira M, Beqiri E, Zoerle T, Carbonara M, et al. Patient-specific ICP epidemiologic thresholds in adult traumatic brain injury: a CENTER-TBI validation study. J Neurosurg Anesthesiol. 2019.

  55. Zeiler FA, Czosnyka M, Smielewski P. Optimal cerebral perfusion pressure via transcranial Doppler in TBI: application of robotic technology. Acta Neurochir (Wien). 2018;160:2149–57.

    Article  Google Scholar 

  56. Donnelly J, Czosnyka M, Adams H, Robba C, Steiner LA, Cardim D, et al. Individualizing thresholds of cerebral perfusion pressure using estimated limits of autoregulation. Crit Care Med. 2017;45:1464–71.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Howells T, Smielewski P, Donnelly J, Czosnyka M, Hutchinson PJA, Menon DK, et al. Optimal cerebral perfusion pressure in centers with different treatment protocols. Crit Care Med. 2018;46:e235–41.

    Article  PubMed  Google Scholar 

  58. Donnelly J, Czosnyka M, Harland S, Varsos GV, Cardim D, Robba C, et al. Cerebral haemodynamics during experimental intracranial hypertension. J Cereb Blood Flow Metab. 2017;37:694–705.

    Article  PubMed  Google Scholar 

  59. Zeiler FA, Donnelly J, Menon DK, Smielewski P, Hutchinson PJA, Czosnyka MA. Description of a new continuous physiological index in traumatic brain injury using the correlation between pulse amplitude of intracranial pressure and cerebral perfusion pressure. J Neurotrauma. 2018;35(7):963–74.

    Article  PubMed  Google Scholar 

  60. Zeiler FA, Thelin EP, Czosnyka M, Hutchinson PJ, Menon DK, Helmy A. Cerebrospinal fluid and microdialysis cytokines in severe traumatic brain injury: a scoping systematic review. Front Neurol. 2017;8:331.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Thelin EP, Tajsic T, Zeiler FA, Menon DK, Hutchinson PJA, Carpenter KLH, et al. Monitoring the neuroinflammatory response following acute brain injury. Front Neurol. 2017;8:351.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hasen M, Almojuela A, Zeiler FA. Autonomic dysfunction and associations with functional and neurophysiological outcome in moderate/severe traumatic brain injury: a scoping review. J Neurotrauma. 2019;36:1491–504.

    Article  PubMed  Google Scholar 

  63. Sykora M, Czosnyka M, Liu X, Donnelly J, Nasr N, Diedler J, et al. Autonomic impairment in severe traumatic brain injury: a multimodal neuromonitoring study. Crit Care Med. 2016;44:1173–81.

    Article  PubMed  Google Scholar 

  64. Nasr N, Czosnyka M, Arevalo F, Hanaire H, Guidolin B, Larrue V. Autonomic neuropathy is associated with impairment of dynamic cerebral autoregulation in type 1 diabetes. Auton Neurosci. 2011;160:59–63.

    Article  CAS  PubMed  Google Scholar 

  65. Lavinio A, Ene-Iordache B, Nodari I, Girardini A, Cagnazzi E, Rasulo F, et al. Cerebrovascular reactivity and autonomic drive following traumatic brain injury. Acta Neurochir Suppl. 2008;102:3–7.

    Article  PubMed  Google Scholar 

  66. Gao L, Smielewski P, Czosnyka M, Ercole A. Cerebrovascular signal complexity six hours after intensive care unit admission correlates with outcome after severe traumatic brain injury. J Neurotrauma. 2016;33:2011–8.

    Article  PubMed  Google Scholar 

  67. Unekawa M, Tomita Y, Masamoto K, Toriumi H, Osada T, Kanno I, et al. Dynamic diameter response of intraparenchymal penetrating arteries during cortical spreading depression and elimination of vasoreactivity to hypercapnia in anesthetized mice. J Cereb Blood Flow Metab. 2017;37:657–70.

    Article  PubMed  Google Scholar 

  68. Toth P, Szarka N, Farkas E, Ezer E, Czeiter E, Amrein K, et al. Traumatic brain injury-induced autoregulatory dysfunction and spreading depression-related neurovascular uncoupling: Pathomechanisms, perspectives, and therapeutic implications. Am J Physiol Heart Circ Physiol. 2016;311:H1118–31.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zeiler FA, Thelin EP, Helmy A, Czosnyka M, Hutchinson PJA, Menon DK. A systematic review of cerebral microdialysis and outcomes in TBI: relationships to patient functional outcome, neurophysiologic measures, and tissue outcome. Acta Neurochir (Wien). 2017;159:2245–73.

    Article  Google Scholar 

  70. Perales AJ, Torregrosa G, Salom JB, Barberá MD, Jover T, Alborch E. Effects of magnesium sulphate on the noradrenaline-induced cerebral vasoconstrictor and pressor responses in the goat. Br J Obstet Gynaecol. 1997;104:898–903.

    Article  CAS  PubMed  Google Scholar 

  71. Gannushkina IV, Shafranova VP, Dadiani LN. Effect of increased arterial pressure on cerebral circulation in normal animals and in animals with experimental renal hypertension. Biull Eksp Biol Med. 1973;76:33–5.

    Article  CAS  PubMed  Google Scholar 

  72. Muravchick S, Bergofsky EH. Adrenergic receptors and vascular resistance in cerebral circulation of the cat. J Appl Physiol. 1976;40:797–804.

    Article  CAS  PubMed  Google Scholar 

  73. Carey JP, Stemmer EA, List JW, Chin SC, Heber R, Connolly JE. The hazards of using vasoactive drugs to augment peripheral and cerebral blood flow. Am Surg. 1969;35:12–22.

    CAS  PubMed  Google Scholar 

  74. Faraci FM. Effects of endothelin and vasopressin on cerebral blood vessels. Am J Physiol. 1989;257:H799–803.

    CAS  PubMed  Google Scholar 

  75. Winters A, Taylor JC, Ren M, Ma R, Liu R, Yang S-H. Transient focal cerebral ischemia induces long-term cerebral vasculature dysfunction in a rodent experimental stroke model. Transl Stroke Res. 2012;3:279–85.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fazekas JF, Alman RW. Cerebral hemodynamic response to combined vasoactive agents. Am J Med Sci. 1965;250:36–41.

    Article  CAS  PubMed  Google Scholar 

  77. Szabo L, Kovach AG, Babosa M, Greenberg JH, Revich M. Effect of sustained norepinephrine infusion on local cerebral blood flow in the rat. Circ Shock. 1983;10:101–17.

    CAS  PubMed  Google Scholar 

  78. Zeiler FA, Sader N, Gillman LM, Teitelbaum J, West M, Kazina CJ. The cerebrovascular response to Ketamine: a systematic review of the animal and human literature. J Neurosurg Anesthesiol. 2016;28:123–40.

    Article  PubMed  Google Scholar 

  79. Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16:987–1048.

    Article  PubMed  Google Scholar 

  80. Carpenter KLH, Young AMH, Hutchinson PJ. Advanced monitoring in traumatic brain injury: microdialysis. Curr Opin Crit Care. 2017;23:103–9.

    Article  PubMed  Google Scholar 

  81. Hutchinson PJ, Jalloh I, Helmy A, Carpenter KLH, Rostami E, Bellander B-M, et al. Consensus statement from the 2014 international microdialysis forum. Intensive Care Med. 2015;41:1517–28.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yue JK, Vassar MJ, Lingsma HF, Cooper SR, Okonkwo DO, Valadka AB, et al. Transforming research and clinical knowledge in traumatic brain injury pilot: multicenter implementation of the common data elements for traumatic brain injury. J Neurotrauma. 2013;30:1831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Maas AIR, Menon DK, Steyerberg EW, Citerio G, Lecky F, Manley GT, et al. Collaborative European neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery. 2015;76:67–80.

    Article  PubMed  Google Scholar 

  84. Bernard F, Gallagher C, Griesdale D, Kramer A, Sekhon M, Zeiler FA. The Canadian high-resolution traumatic brain injury (CAHR-TBI) research collaborative. Can J Neurol Sci. 2020;1–20..

Download references

Acknowledgements

FAZ’s research program is supported by the University of Manitoba VPRI Research Investment Fund (RIF), University of Manitoba Rudy Falk Clinician-Scientist Professorship, the University of Manitoba Centre on Aging Fellowship, the Health Sciences Centre Foundation (HSCF) Winnipeg, the Manitoba Public Insurance (MPI) Neuroscience/TBI Research Endowment, the National Institutes of Health (NIH), and the Canadian Institutes of Health Research (CIHR). LF is supported through the University of Manitoba—Department of Surgery GFT Research Grant, and the University of Manitoba Office of Research Services (ORS)—University Research Grant Program (URGP). CB is supported through the University of Manitoba—Centre on Aging Fellowship. AG is supported through the University of Manitoba Clinician Investigator Program.

Author information

Authors and Affiliations

Authors

Contributions

LF was responsible for design, review of articles and manuscript composition. CB, JD and AG were responsible for review/synthesis of information and manuscript composition. FAZ was responsible for concept, design, data synthesis, manuscript composition and supervision.

Corresponding author

Correspondence to Frederick A. Zeiler.

Ethics declarations

Source of Support

LF is supported by the Department of Surgery GFT Grant and the URGP at the University of Manitoba. CB is supported by the Centre on Aging Fellowship at the University of Manitoba. AG is supported by the Clinician Investigator Program, at the University of Manitoba. FAZ receives research support from the Manitoba Public Insurance (MPI) Neuroscience/TBI Research Endowment, the Health Sciences Centre Foundation Winnipeg, the United States National Institutes of Health (NIH) through the National Institute of Neurological Disorders and Stroke (NINDS), the Canadian Institutes of Health Research (CIHR), the Canadian Foundation for Innovation (CFI), the University of Manitoba VPRI Research Investment Fund (RIF), the University of Manitoba Centre on Aging, and the University of Manitoba Rudy Falk Clinician-Scientist Professorship.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Froese, L., Batson, C., Gomez, A. et al. The Limited Impact of Current Therapeutic Interventions on Cerebrovascular Reactivity in Traumatic Brain Injury: A Narrative Overview. Neurocrit Care 34, 325–335 (2021). https://doi.org/10.1007/s12028-020-01003-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-020-01003-4

Keywords

Navigation