Skip to main content
Log in

Association Between Therapeutic Hypothermia and Outcomes in Patients with Non-shockable Out-of-Hospital Cardiac Arrest Developed After Emergency Medical Service Arrival (SOS-KANTO 2012 Analysis Report)

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background/objective

The outcomes of patients with non-shockable out-of-hospital cardiac arrest (non-shockable OHCA) are poorer than those of patients with shockable out-of-hospital cardiac arrest (shockable OHCA). In this retrospective study, we selected patients from the SOS-KANTO 2012 study with non-shockable OHCA that developed after emergency medical service (EMS) arrival and analyzed the effect of therapeutic hypothermia (TH) on non-shockable OHCA patients.

Methods

Of 16,452 patients who have definitive data on the 3-month outcome in the SOS-KANTO 2012 study, we selected 241 patients who met the following criteria: age ≥ 18 years, normal spontaneous respiration or palpable pulse upon emergency medical services arrival, no ventricular fibrillation or pulseless ventricular tachycardia before hospital arrival, and achievement of spontaneous circulation without cardiopulmonary bypass. Patients were divided into two groups based on the presence or absence of TH and were analyzed.

Results

Of the 241 patients, 49 underwent TH. Univariate analysis showed that the 1-/3-month survival rates and favorable 3-month cerebral function outcome rates in the TH group were significantly better than the non-TH group (46% vs 19%, respectively, P < 0.001, 35% vs 12%, respectively, P < 0.001, 20% vs 7%, respectively, P = 0.01). Multivariate logistic regression analysis showed that TH was a significant, independent prognostic factor for cerebral function outcome.

Conclusions

In this study, TH was an independent prognostic factor for the 3-month cerebral function outcome. Even in patients with non-shockable OHCA, TH may improve outcome if the interval from the onset of cardiopulmonary arrest is relatively short, and adequate cardiopulmonary resuscitation is initiated immediately after onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atwood C, Eisenberg MS, Herlitz J, Rea TD. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation. 2005;67(1):75–80.

    Article  PubMed  Google Scholar 

  2. Nichol G, Thomas E, Callaway CW, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA. 2008;300(12):1423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dumas F, Grimaldi D, Zuber B, et al. Is hypothermia after cardiac arrest effective in both shockable and nonshockable patients?: insights from a large registry. Circulation. 2011;123(8):877–86.

    Article  PubMed  Google Scholar 

  4. Vaahersalo J, Hiltunen P, Tiainen M, et al. Therapeutic hypothermia after out-of-hospital cardiac arrest in Finnish intensive care units: the FINNRESUSCI study. Intensive Care Med. 2013;39(5):826–37.

    Article  PubMed  Google Scholar 

  5. Kim YM, Yim HW, Jeong SH, Klem ML, Callaway CW. Does therapeutic hypothermia benefit adult cardiac arrest patients presenting with non-shockable initial rhythms? A systematic review and meta-analysis of randomized and non-randomized studies. Resuscitation. 2012;83(2):188–96.

    Article  PubMed  Google Scholar 

  6. Waalewijn RA, Nijpels MA, Tijssen JG, Koster RW. Prevention of deterioration of ventricular fibrillation by basic life support during out-of-hospital cardiac arrest. Resuscitation. 2002;54(1):31–6.

    Article  PubMed  Google Scholar 

  7. Hay AW, Swann DG, Bell K, Walsh TS, Cook B. Therapeutic hypothermia in comatose patients after out-of-hospital cardiac arrest. Anaesthesia. 2008;63(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  8. Soga T, Nagao K, Sawano H, et al. Neurological benefit of therapeutic hypothermia following return of spontaneous circulation for out-of-hospital non-shockable cardiac arrest. Circ J. 2012;76(11):2579–85.

    Article  PubMed  Google Scholar 

  9. Oddo M, Schaller MD, Feihl F, Ribordy V, Liaudet L. From evidence to clinical practice: effective implementation of therapeutic hypothermia to improve patient outcome after cardiac arrest. Crit Care Med. 2006;34(7):1865–73.

    Article  PubMed  Google Scholar 

  10. Oddo M, Ribordy V, Feihl F, et al. Early predictors of outcome in comatose survivors of ventricular fibrillation and non-ventricular fibrillation cardiac arrest treated with hypothermia: a prospective study. Crit Care Med. 2008;36(8):2296–301.

    Article  PubMed  Google Scholar 

  11. Hagihara A, Hasegawa M, Abe T, et al. Prehospital epinephrine use and survival among patients with out-of-hospital cardiac arrest. JAMA. 2012;307(11):1161–8.

    Article  CAS  Google Scholar 

  12. Machida M, Miura S, Matsuo K, Ishikura H, Saku K. Effect of intravenous adrenaline before arrival at the hospital in out-of-hospital cardiac arrest. J Cardiol. 2012;60(6):503–7.

    Article  PubMed  Google Scholar 

  13. Pozzi M, Koffel C, Armoiry X, et al. Extracorporeal life support for refractory out-of-hospital cardiac arrest: Should we still fight for? A single-centre, 5-year experience. Int J Cardiol. 2016;204:70–6.

    Article  PubMed  Google Scholar 

  14. Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63.

    Article  Google Scholar 

  15. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.

    Article  Google Scholar 

  16. Callaway CW, Donnino MW, Fink EL, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association Guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–82.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Choi SW, Shin SD, Ro YS, et al. Effect of therapeutic hypothermia on the outcomes after out-of-hospital cardiac arrest according to initial ECG rhythm and witnessed status: a nationwide observational interaction analysis. Resuscitation. 2016;100:51–9.

    Article  PubMed  Google Scholar 

  18. Sung G, Bosson N, Kaji AH, et al. Therapeutic hypothermia after resuscitation from a non-shockable rhythm improves outcomes in a regionalized system of cardiac arrest care. Neurocrit Care. 2016;24(1):90–6.

    Article  CAS  PubMed  Google Scholar 

  19. Testori C, Sterz F, Behringer W, et al. Mild therapeutic hypothermia is associated with favourable outcome in patients after cardiac arrest with non-shockable rhythms. Resuscitation. 2011;82(9):1162–7.

    Article  PubMed  Google Scholar 

  20. Mader TJ, Nathanson BH, Soares WE III, Coute RA, McNally BF. Comparative effectiveness of therapeutic hypothermia after out-of-hospital cardiac arrest: insight from a large data registry. Ther Hypothermia Temp Manag. 2014;4(1):21–31.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lindner TW, Langorgen J, Sunde K, et al. Factors predicting the use of therapeutic hypothermia and survival in unconscious out-of-hospital cardiac arrest patients admitted to the ICU. Crit Care. 2013;17(4):R147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Group, S.-K.S. Changes in treatments and outcomes among elderly patients with out-of-hospital cardiac arrest between 2002 and 2012: a post hoc analysis of the SOS-KANTO 2002 and 2012. Resuscitation. 2015;97:76–82.

    Article  Google Scholar 

  23. Group, S.-K.S. Investigation and treatment of pulmonary embolism as a potential etiology may be important to improve post-resuscitation prognosis in non-shockable out-of-hospital cardiopulmonary arrest: report on an analysis of the SOS-KANTO 2012 study. Acute Med Surg. 2016;3(3):250–9.

    Article  Google Scholar 

  24. SOS-KANTO Study Group. Changes in pre- and in-hospital management and outcomes for out-of-hospital cardiac arrest between 2002 and 2012 in Kanto, Japan: the SOS-KANTO 2012 Study. Acute Med Surg. 2015;2(4):225–33.

    Article  Google Scholar 

  25. Cummins RO, Chamberlain DA, Abramson NS, et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein Style. A statement for health professionals from a task force of the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Circulation. 1991;84(2):960–75.

    Article  CAS  PubMed  Google Scholar 

  26. Jacobs I, Nadkarni V, Bahr J, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation. 2004;110(21):3385–97.

    Article  PubMed  Google Scholar 

  27. Field JM, Hazinski MF, Sayre MR, et al. Part 1: executive summary: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S640–56.

    Article  PubMed  Google Scholar 

  28. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;1(7905):480–4.

    Article  CAS  PubMed  Google Scholar 

  29. Peberdy MA, Callaway CW, Neumar RW, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S768–86.

    Article  PubMed  Google Scholar 

  30. Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.

    Article  CAS  Google Scholar 

  31. Frydland M, Kjaergaard J, Erlinge D, et al. Target temperature management of 33 °C and 36 °C in patients with out-of-hospital cardiac arrest with initial non-shockable rhythm—a TTM sub-study. Resuscitation. 2015;89:142–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We also thank Ms. Mai Matsumoto, and the secretariat of the Japanese Association for Acute Medicine of Kanto, for their help in collecting the data and coordinating our project. We are proud of all the bystanders who undertook basic resuscitation in the cases described in this study, and all of the firefighters, EMS, nurses, physicians, and other healthcare professionals in the Kanto region.

Funding

This study was supported by the Japanese Association for Acute Medicine of Kanto. The funder had no role in the execution of this study or interpretation of the results.

Author information

Authors and Affiliations

Authors

Contributions

MY designed the study, collected the data, conducted the statistical analysis, analyzed the data, wrote the initial draft of the paper, and participated in revising the manuscript and addressing the reviewers’ comments. TY designed the study, collected the data, analyzed the data, provided guidance on statistical analysis, assisted with manuscript development, and participated in revising the manuscript and addressing the reviewers’ comments. YM and YT analyzed the data, assisted with manuscript development, and participated in revising the manuscript and addressing the reviewers’ comments. SF designed the study, analyzed the data, provided guidance on statistical analysis, assisted with manuscript development, and participated in revising the manuscript and addressing the reviewers’ comments. NK developed the project (SOS-KANTO 2012 study), analyzed the data, provided guidance on statistical analysis, assisted with manuscript development, and participated in revising the manuscript and addressing the reviewers’ comments. YT and AS developed the project (SOS-KANTO 2012 study), collected data, assisted with manuscript development, and participated in revising the manuscript and addressing the reviewers’ comments. NY developed the project (SOS-KANTO 2012 study), collected data, provided guidance on statistical analysis, assisted with manuscript development, and participated in revising the manuscript and addressing the reviewers’ comments. KN, AY and NM developed the project (SOS-KANTO 2012 study), assisted with manuscript development, and participated in revising the manuscript and addressing the reviewers’ comments.

SOS-KANTO 2012 Steering Council

Yokohama City University Medical Center, Kanagawa (President, Naoto Morimura MD); Nihon University School of Medicine, Tokyo (Director, Atsushi Sakurai MD); National Cerebral and Cardiovascular Center Hospital, Osaka (Director, Yoshio Tahara MD); Tokyo Women’s Medical University Hospital, Tokyo (Arino Yaguchi MD); Nihon University Surugadai Hospital, Tokyo (Ken Nagao MD); Nippon Medical School Hospital, Tokyo (Tagami Takashi MD); Japanese Red Cross Maebashi Hospital, Gunma (Dai Miyazaki MD); National Disaster Medical Center, Tokyo (Tomoko Ogasawara MD); Keio University Hospital, Tokyo (Kei Hayashida MD, Masaru Suzuki MD); Tokai University School of Medicine, Kanagawa (Mari Amino MD); Kimitsu Chuo Hospital, Chiba (Nobuya Kitamura MD); Juntendo University Nerima Hospital, Tokyo (Tomohisa Nomura MD); Tokyo Metropolitan Children’s Medical Centre, Tokyo (Naoki Shimizu MD); Tokyo Metropolitan Bokutoh Hospital, Tokyo (Akiko Akashi MD); National Center of Neurology and Psychiatry, Tokyo, Japan (Naohiro Yonemoto DPH).

SOS-KANTO 2012 STUDY GROUP

TOKAI UNIVERSITY SCHOOL of Medicine (Sadaki Inokuchi MD); St. Marianna University School of Medicine,Yokohama Seibu Hospital (Yoshihiro Masui MD); Koto Hospital (Kunihisa Miura MD); Saitama Medical Center Advanced Tertiary Medical Center (Haruhiko Tsutsumi MD); Kawasaki Municipal Hospital Emergency and Critical Care Center (Kiyotsugu Takuma MD); Yokohama Municipal Citizen’s Hospital (Ishihara Atsushi MD); Japanese Red Cross Maebashi Hospital (Minoru Nakano MD); Juntendo University Urayasu Hospital (Hiroshi Tanaka MD); Dokkyo Medical University Koshigaya Hospital (Keiichi Ikegami MD); Hachioji Medical Center of Tokyo Medical University (Takao Arai MD); Tokyo Women’s Medical University Hospital (Arino Yaguchi MD); Kimitsu Chuo Hospital (Nobuya Kitamura MD); Chiba University Graduate School of Medicine (Shigeto Oda MD); Saiseikai Utsunomiya Hospital (Kenji Kobayashi MD); Mito Saiseikai General Hospital (Takayuki Suda MD); Dokkyo Medical University (Kazuyuki Ono MD); Yokohama City University Medical Center (Naoto Morimura MD); National Hospital Organization Yokohama Medical Center (Ryosuke Furuya MD); National Disaster Medical Center (Yuichi Koido MD); Yamanashi Prefectural Central Hospital (Fumiaki Iwase MD); Surugadai Nihon University Hospital (Ken Nagao MD); Yokohama Rosai Hospital (Shigeru Kanesaka MD); Showa General Hospital (Yasusei Okada MD); Nippon Medical School Tamanagayama Hospital (Kyoko Unemoto MD); Tokyo Women’s Medical University Yachiyo Medical Center (Tomohito Sadahiro MD); Awa Regional Medical Center (Masayuki Iyanaga MD); Todachuo General Hospital (Asaki Muraoka MD); Japanese Red Cross Medical Center (Munehiro Hayashi MD); St. Luke’s International Hospital (Shinichi Ishimatsu MD); Showa University School of Medicine (Yasufumi Miyake MD); Totsuka Kyoritsu Hospital 1 (Hideo Yokokawa MD); St. Marianna University School of Medicine (Yasuaki Koyama MD); National Hospital Organization Mito Medical Center (Asuka Tsuchiya MD); Tokyo Metropolitan Tama Medical Center (Tetsuya Kashiyama MD); Showa University Fujigaoka Hospital (Munetaka Hayashi MD); Gunma University Graduate School of Medicine (Kiyohiro Oshima MD); Saitama Red Cross Hospital (Kazuya Kiyota MD); Tokyo Metropolitan Bokutoh Hospital (Yuichi Hamabe MD); Nippon Medical School Hospital (Hiroyuki Yokota MD); Keio University Hospital (Shingo Hori MD); Chiba Emergency Medical Center (Shin Inaba MD); Teikyo University School of Medicine (Tetsuya Sakamoto MD); Japanese Red Cross Musashino Hospital (Naoshige Harada MD); National Center for Global Health and Medicine Hospital (Akio Kimura MD); Tokyo Metropolitan Police Hospital (Masayuki Kanai MD); Medical Hospital of Tokyo Medical and Dental University (Yasuhiro Otomo MD); Juntendo University Nerima Hospital (Manabu Sugita MD); Nihon University School of Medicine (Kosaku Kinoshita MD); Toho University Ohashi Medical Center (Takatoshi Sakurai MD); Saiseikai Yokohamashi Tobu Hospital (Mitsuhide Kitano MD); Nippon Medical School Musashikosugi Hospital (Kiyoshi Matsuda MD); Tokyo Rosai Hospital (Kotaro Tanaka MD); Toho University Omori Medical Center (Katsunori Yoshihara MD); Hiratsuka City Hospital (Kikuo Yoh MD); Yokosuka Kyosai Hospital (Junichi Suzuki MD); Saiseikai Yokohamashi Nambu Hospital (Hiroshi Toyoda MD); Nippon Medical School Chiba Hokusoh Hospital (Kunihiro Mashiko MD); Tokyo Metropolitan Children’s Medical Centre (Naoki Shimizu MD); National Medical Center for Children and Mothers (Takashi Muguruma MD); Chiba Aoba Municipal Hospital (Tadanaga Shimada MD); Kuki General Hospital (Yoshiro Kobe MD); Matsudo City Hospital (Tomohisa Shoko MD); Japanese Red Cross Narita Hospital (Kazuya Nakanishi MD); Tokyo Bay Urayasu/Ichikawa Medical Center (Takashi Shiga MD); NTT Medical Center Tokyo (Takefumi Yamamoto MD); Tokyo Saiseikai Central Hospital (Kazuhiko Sekine MD); Fuji Heavy Industries Health Insurance Society OTA Memorial Hospital (Shinichi Izuka MD) (http://www.jaamkanto.jp/sos_kanto/sos_kanto2012_contributors.html).

Corresponding author

Correspondence to Shigeki Fujitani.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, M., Yoshida, T., Masui, Y. et al. Association Between Therapeutic Hypothermia and Outcomes in Patients with Non-shockable Out-of-Hospital Cardiac Arrest Developed After Emergency Medical Service Arrival (SOS-KANTO 2012 Analysis Report). Neurocrit Care 30, 429–439 (2019). https://doi.org/10.1007/s12028-018-0611-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-018-0611-z

Keywords

Navigation