Skip to main content

Advertisement

Log in

Changes in Cerebral Partial Oxygen Pressure and Cerebrovascular Reactivity During Intracranial Pressure Plateau Waves

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Plateau waves in intracranial pressure (ICP) are frequently recorded in neuro intensive care and are not yet fully understood. To further investigate this phenomenon, we analyzed partial pressure of cerebral oxygen (pbtO2) and a moving correlation coefficient between ICP and mean arterial blood pressure (ABP), called PRx, along with the cerebral oxygen reactivity index (ORx), which is a moving correlation coefficient between cerebral perfusion pressure (CPP) and pbtO2 in an observational study.

Methods

We analyzed 55 plateau waves in 20 patients after severe traumatic brain injury. We calculated ABP, ABP pulse amplitude (ampABP), ICP, CPP, pbtO2, heart rate (HR), ICP pulse amplitude (ampICP), PRx, and ORx, before, during, and after each plateau wave. The analysis of variance with Bonferroni post hoc test was used to compare the differences in the variables before, during, and after the plateau wave. We considered all plateau waves, even in the same patient, independent because they are separated by long intervals.

Results

We found increases for ICP and ampICP according to our operational definitions for plateau waves. PRx increased significantly (p = 0.00026), CPP (p < 0.00001) and pbtO2 (p = 0.00007) decreased significantly during the plateau waves. ABP, ampABP, and HR remained unchanged. PRx during the plateau was higher than before the onset of wave in 40 cases (73 %) with no differences in baseline parameters for those with negative and positive ΔPRx (difference during and after). ORx showed an increase during and a decrease after the plateau waves, however, not statistically significant. PbtO2 overshoot after the wave occurred in 35 times (64 %), the mean difference was 4.9 ± 4.6 Hg (mean ± SD), and we found no difference in baseline parameters between those who overshoot and those who did not overshoot.

Conclusions

Arterial blood pressure remains stable in ICP plateau waves, while cerebral autoregulatory indices show distinct changes, which indicate cerebrovascular reactivity impairment at the top of the wave. PbtO2 decreases during the waves and may show a slight overshoot after normalization. We assume that this might be due to different latencies of the cerebral blood flow and oxygen level control mechanisms. Other factors may include baseline conditions, such as pre-plateau wave cerebrovascular reactivity or pbtO2 levels, which differ between studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36:1–193.

    CAS  PubMed  Google Scholar 

  2. Nordstrom CH, Sundbarg G, Kullberg G, Ponten U, Kjallquist A. The man behind the method: Nils Lundberg. He measured the classical “plateau waves”. Lakartidningen. 1993;90(924–6):31–2.

    Google Scholar 

  3. Varsos GV, de Riva N, Smielewski P, et al. Critical closing pressure during intracranial pressure plateau waves. Neurocrit Care. 2013;18:341–8.

    Article  PubMed  Google Scholar 

  4. Sandler AL, Daniels LB 3rd, Staffenberg DA, Kolatch E, Goodrich JT, Abbott R. Successful treatment of post-shunt craniocerebral disproportion by coupling gradual external cranial vault distraction with continuous intracranial pressure monitoring. J Neurosurg Pediatr. 2013;11:653–7.

    Article  PubMed  Google Scholar 

  5. Oshorov AV, Savin IA, Goriachev AS, et al. Intracranial pressure plateau waves in patients with severe traumatic brain injury. Anesteziol Reanimatol. 2013;4:44–50.

    PubMed  Google Scholar 

  6. Dias C, Maia I, Cerejo A, et al. Pressures, flow, and brain oxygenation during plateau waves of intracranial pressure. Neurocrit Care. 2014;21:124–32.

    Article  CAS  PubMed  Google Scholar 

  7. de Riva N, Budohoski KP, Smielewski P, et al. Transcranial doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17:58–66.

    Article  PubMed  Google Scholar 

  8. Shahsavari S, McKelvey T, Ritzen CE, Rydenhag B. Plateau waves and baroreflex sensitivity in patients with head injury: a case study. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:3792–5.

    CAS  PubMed  Google Scholar 

  9. Ursino M, Giannessi M, Frapparelli M, Magosso E. Effect of cushing response on systemic arterial pressure. IEEE Eng Med Biol Mag. 2009;28:63–71.

    Article  PubMed  Google Scholar 

  10. Kim DJ, Kasprowicz M, Carrera E, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30:647–59.

    Article  CAS  PubMed  Google Scholar 

  11. Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care. 2009;10:373–86.

    Article  PubMed  Google Scholar 

  12. Castellani G, Zweifel C, Kim DJ, et al. Plateau waves in head injured patients requiring neurocritical care. Neurocrit Care. 2009;11:143–50.

    Article  PubMed  Google Scholar 

  13. Stevens SA, Stimpson J, Lakin WD, Thakore NJ, Penar PL. A model for idiopathic intracranial hypertension and associated pathological ICP wave-forms. IEEE Trans Bio-Med Eng. 2008;55:388–98.

    Article  Google Scholar 

  14. Imberti R, Fuardo M, Bellinzona G, Pagani M, Langer M. The use of indomethacin in the treatment of plateau waves: effects on cerebral perfusion and oxygenation. J Neurosurg. 2005;102:455–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hayward R, Gonsalez S. How low can you go? Intracranial pressure, cerebral perfusion pressure, and respiratory obstruction in children with complex craniosynostosis. J Neurosurg. 2005;102:16–22.

    PubMed  Google Scholar 

  16. Torbey MT, Geocadin RG, Razumovsky AY, Rigamonti D, Williams MA. Utility of CSF pressure monitoring to identify idiopathic intracranial hypertension without papilledema in patients with chronic daily headache. Cephalalgia. 2004;24:495–502.

    Article  CAS  PubMed  Google Scholar 

  17. Rose JC, Mayer SA. Optimizing blood pressure in neurological emergencies. Neurocrit Care. 2004;1:287–99.

    Article  PubMed  Google Scholar 

  18. Lewis PM, Smielewski P, Rosenfeld JV, Pickard JD, Czosnyka M. A Continuous Correlation Between Intracranial Pressure and Cerebral Blood Flow Velocity Reflects Cerebral Autoregulation Impairment During Intracranial Pressure Plateau Waves. Neurocrit Care 2014. (Epub ahead of print).

  19. Lazaridis C. Plateau waves of intracranial pressure and mechanisms of brain hypoxia. J Crit Care. 2014;29:303–4.

    Article  PubMed  Google Scholar 

  20. Fuentes JM, Bouscarel C, Choucair Y, Roquefeuil B, Vlahovitch B, Blanchet P. Monitoring of intracranial pression in acute neurotrauma by extra-dural screw (author’s transl). Anesth Analg. 1979;36:429–33.

    CAS  Google Scholar 

  21. Carhuapoma JR, Qureshi AI, Bhardwaj A, Williams MA. Interhemispheric intracranial pressure gradients in massive cerebral infarction. J Neurosurg Anesthesiol. 2002;14:299–303.

    Article  PubMed  Google Scholar 

  22. Hayashi M, Kobayashi H, Handa Y, Kawano H, Hirose S, Ishii H. Plateau-wave phenomenon (II). Occurrence of brain herniation in patients with and without plateau waves. Brain. 1991;114(Pt 6):2693–9.

    Article  PubMed  Google Scholar 

  23. Gjerris F, Soelberg Sorensen P, Vorstrup S, Paulson OB. Intracranial pressure, conductance to cerebrospinal fluid outflow, and cerebral blood flow in patients with benign intracranial hypertension (pseudotumor cerebri). Ann Neurol. 1985;17:158–62.

    Article  CAS  PubMed  Google Scholar 

  24. Jensen F, Jensen FT. Acquired hydrocephalus. II. Diagnostic and prognostic value of quantitative isotope ventriculography (QIV), lumbar isotope cisternography (LIC), pneumoencephalography, and continuous intraventricular pressure recording (CIP). Acta Neurochir. 1979;46:243–57.

    Article  CAS  PubMed  Google Scholar 

  25. Hansen K, Gjerris F, Sorensen PS. Absence of hydrocephalus in spite of impaired cerebrospinal fluid absorption and severe intracranial hypertension. Acta Neurochir. 1987;86:93–7.

    Article  CAS  PubMed  Google Scholar 

  26. Matsuda M, Yoneda S, Handa H, Gotoh H. Cerebral hemodynamic changes during plateau waves in brain-tumor patients. J Neurosurg. 1979;50:483–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi M, Yamamoto S. Acute transient rises of intracranial pressure (plateau wave type) seen with a pontine hemorrhage. Surg Neurol. 1978;9:343–6.

    CAS  PubMed  Google Scholar 

  28. Hayashi M, Handa Y, Kobayashi H, Kawano H, Ishii H, Hirose S. Plateau-wave phenomenon (I). Correlation between the appearance of plateau waves and CSF circulation in patients with intracranial hypertension. Brain. 1991;114(Pt 6):2681–91.

    Article  PubMed  Google Scholar 

  29. Hayashi M, Kobayashi H, Handa Y, Kawano H, Kabuto M. Brain blood volume and blood flow in patients with plateau waves. J Neurosurg. 1985;63:556–61.

    Article  CAS  PubMed  Google Scholar 

  30. Dahlerup B, Gjerris F, Harmsen A, Sorensen PS. Severe headache as the only symptom of long-standing shunt dysfunction in hydrocephalic children with normal or slit ventricles revealed by computed tomography. Child’s Nerv Syst. 1985;1:49–52.

    Article  CAS  Google Scholar 

  31. Wayenberg JL, Hasaerts D, Franco P, Valente F, Massager N. Anterior fontanelle pressure variations during sleep in healthy infants. Sleep. 1995;18:223–8.

    CAS  PubMed  Google Scholar 

  32. Kogure Y, Fujii H, Yamamoto S. Pressure waves induced by electrical stimulation of upper pons and lower midbrain in dogs with experimental subarachnoid hemorrhage. No Shinkei. 1989;41:283–8.

    CAS  Google Scholar 

  33. Yasunami T, Kuno M, Maeda M, Matsuura S. Responses of intracranial pressure (ICP) produced by stimulating the pressor area in the brainstem at various levels of blood pressure and ICP in cats. Acta Neurol Scand. 1987;76:94–101.

    Article  CAS  PubMed  Google Scholar 

  34. Hayashi M, Ishii H, Handa Y, Kobayashi H, Kawano H, Kabuto M. Role of the medulla oblongata in plateau-wave development in dogs. J Neurosurg. 1987;67:97–101.

    Article  CAS  PubMed  Google Scholar 

  35. Matsuura S, Kuno M, Yasunami T, Maeda M. Changes in intracranial pressure and arterial blood pressure following electric stimulation to restricted regions in the cat brainstem. Jpn J Physiol. 1986;36:857–69.

    Article  CAS  PubMed  Google Scholar 

  36. Takayasu M, Dacey RG Jr. Spontaneous tone of cerebral parenchymal arterioles: a role in cerebral hyperemic phenomena. J Neurosurg. 1989;71:711–7.

    Article  CAS  PubMed  Google Scholar 

  37. Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol. 1997;82:1256–69.

    CAS  PubMed  Google Scholar 

  38. Sutton LN, Cho BK, Jaggi J, Joseph PM, Bruce DA. Effects of hydrocephalus and increased intracranial pressure on auditory and somatosensory evoked responses. Neurosurgery. 1986;18:756–61.

    Article  CAS  PubMed  Google Scholar 

  39. Wald A, Hochwald GM. An animal model for the production of intracranial pressure plateau waves. Ann Neurol. 1977;1:486–8.

    Article  CAS  PubMed  Google Scholar 

  40. Watling CJ, Cairncross JG. Acetazolamide therapy for symptomatic plateau waves in patients with brain tumors. Report of three cases. J Neurosurg. 2002;97:224–6.

    Article  CAS  PubMed  Google Scholar 

  41. Alberti E, Hartmann A, Schutz HJ, Schreckenberger F. The effect of large doses of dexamethasone on the cerebrospinal fluid pressure in patients with supratentorial tumors. J Neurol. 1978;217:173–81.

    Article  CAS  PubMed  Google Scholar 

  42. Imberti R, Ciceri M, Bellinzona G, Pugliese R. The use of hyperventilation in the treatment of plateau waves in two patients with severe traumatic brain injury: contrasting effects on cerebral oxygenation. J Neurosurg Anesthesiol. 2000;12:124–7.

    Article  CAS  PubMed  Google Scholar 

  43. Czosnyka M, Smielewski P, Piechnik S, et al. Hemodynamic characterization of intracranial pressure plateau waves in head-injury patients. J Neurosurg. 1999;91:11–9.

    Article  CAS  PubMed  Google Scholar 

  44. Johnston IH, Rowan JO, Park DM, Rennie MJ. Raised intracranial pressure and cerebral blood flow. 5. Effects of episodic intracranial pressure waves in primates. J Neurol Neurosurg Psychiatry. 1975;38:1076–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Handa Y, Hayashi M, Hirose S, Noguchi Y, Kobayashi H. The effect of increased intracranial pressure during the appearance of pressure waves on the brainstem. Neurol Med Chir. 1990;30:301–8.

    Article  CAS  Google Scholar 

  46. Rosner MJ, Becker DP. Origin and evolution of plateau waves. Experimental observations and a theoretical model. J Neurosurg. 1984;60:312–24.

    Article  CAS  PubMed  Google Scholar 

  47. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7 discussion 7–9.

    Article  CAS  PubMed  Google Scholar 

  48. Lang EW, Jaeger M. Systematic and comprehensive literature review of publications on direct cerebral oxygenation monitoring. Open Crit Care Med J. 2013;6:1–24.

    Article  Google Scholar 

  49. Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34:1783–8.

    Article  PubMed  Google Scholar 

  50. Lang EW, Czosnyka M, Mehdorn HM. Tissue oxygen reactivity and cerebral autoregulation after severe traumatic brain injury. Crit Care Med. 2003;31:267–71.

    Article  CAS  PubMed  Google Scholar 

  51. Hlatky R, Valadka AB, Robertson CS. Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation. Neurosurgery. 2005;57:917–23 discussion-23.

    Article  PubMed  Google Scholar 

  52. Timofeev I, Czosnyka M, Carpenter KL, et al. Interaction between brain chemistry and physiology after traumatic brain injury: impact of autoregulation and microdialysis catheter location. J Neurotrauma. 2011;28:849–60.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Jaeger M, Lang EW. Cerebrovascular pressure reactivity and cerebral oxygen regulation after severe head injury. Neurocrit Care. 2013;19:69–73.

    Article  CAS  PubMed  Google Scholar 

  54. Radolovich DK, Czosnyka M, Timofeev I, et al. Transient changes in brain tissue oxygen in response to modifications of cerebral perfusion pressure: an observational study. Anesth Analg. 2010;110:165–73.

    Article  PubMed  Google Scholar 

  55. Radolovich DK, Czosnyka M, Timofeev I, et al. Reactivity of brain tissue oxygen to change in cerebral perfusion pressure in head injured patients. Neurocrit Care. 2009;10:274–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234:H371–83.

    CAS  PubMed  Google Scholar 

  57. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.

    Article  CAS  PubMed  Google Scholar 

  58. Lang EW, Chesnut RM. A bedside method for investigating the integrity and critical thresholds of cerebral pressure autoregulation in severe traumatic brain injury patients. Br J Neurosurg. 2000;14:117–26.

    Article  CAS  PubMed  Google Scholar 

  59. Budohoski KP, Zweifel C, Kasprowicz M, et al. What comes first? The dynamics of cerebral oxygenation and blood flow in response to changes in arterial pressure and intracranial pressure after head injury. Br J Anaesth. 2012;108:89–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Jaeger M, Soehle M, Schuhmann MU, Winkler D, Meixensberger J. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir. 2005;147:51–6 discussion 6.

    Article  CAS  PubMed  Google Scholar 

  61. Bouzat P, Sala N, Payen JF, Oddo M. Beyond intracranial pressure: optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care. 2013;3:23.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Magdalena Kasprowicz is the recipient of a scholarship funded by the Polish Ministry of Science and Higher Education. All authors thank the Neurocritical Care Unit staff members at Addenbrooke’s Hospital, UK, for their active involvement and support during the study.

Disclosure

The software for brain monitoring ICM+ is licensed by the University of Cambridge (Cambridge Enterprise). Peter Smielewski and Marek Czosnyka have financial interests in a part of the licensing fee. Erhard Lang and Marek Czosnyka are members of the Integra Speakers’ bureau. Erhard Lang is a medical advisor for GMS/Integra. All other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard W. Lang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, E.W., Kasprowicz, M., Smielewski, P. et al. Changes in Cerebral Partial Oxygen Pressure and Cerebrovascular Reactivity During Intracranial Pressure Plateau Waves. Neurocrit Care 23, 85–91 (2015). https://doi.org/10.1007/s12028-014-0074-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-014-0074-9

Keywords

Navigation