Skip to main content
Log in

Hypothermia After CPR Prolongs Conduction Times of Somatosensory Evoked Potentials

  • ORIGINAL ARTICLE
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

To investigate the effect of mild hypothermia on conduction times and amplitudes of median nerve somatosensory evoked potentials (SEP) in patients after cardiopulmonary resuscitation (CPR).

Methods

Patients treated with hypothermia after CPR who underwent SEP recording during hypothermia and after rewarming were selected from a prospectively collected database. Latencies and amplitudes of N9 (peripheral conduction time, PCT), N13, and N20 were measured. The central conduction time (CCT) was defined as peak–peak latency N13–N20. Recordings of 25 patients were assessed by a second observer to determine the intraclass correlation coefficient (ICC).

Results

A total of 115 patients were included. The mean body temperature at SEP during hypothermia was 33.1 °C (SD 0.8) and after rewarming 37.1 °C (SD 0.8). Mean latencies of N9, N13, and N20 and mean CCT were longer during hypothermia. There were no consistent differences in amplitudes. There was an almost perfect ICC for assessment of latencies and amplitudes.

Conclusions

This study showed that PCT and CCT of median nerve SEP were prolonged during treatment with hypothermia after CPR compared with after rewarming. Amplitudes did not differ consistently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67:203–10.

    Article  PubMed  CAS  Google Scholar 

  2. Bouwes A, Kuiper MA, Hijdra A, Horn J. Induced hypothermia and determination of neurological outcome after CPR in ICUs in the Netherlands: results of a survey. Resuscitation. 2010;81:393–7.

    Article  PubMed  Google Scholar 

  3. Koht A, Schutz W, Schmidt G, Schramm J, Watanabe E. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg. 1988;67:435–41.

    Article  PubMed  CAS  Google Scholar 

  4. Scheepstra GL, de Lange JJ, Booij LH, Ros HH. Median nerve evoked potentials during propofol anaesthesia. Br J Anaesth. 1989;62:92–4.

    Article  PubMed  CAS  Google Scholar 

  5. Sloan TB, Fugina ML, Toleikis JR. Effects of midazolam on median nerve somatosensory evoked potentials. Br J Anaesth. 1990;64:590–3.

    Article  PubMed  CAS  Google Scholar 

  6. Zandbergen EG, Hijdra A, de Haan RJ, et al. Interobserver variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol. 2006;117:1529–35.

    Article  PubMed  CAS  Google Scholar 

  7. Markand ON, Warren C, Mallik GS, King RD, Brown JW, Mahomed Y. Effects of hypothermia on short latency somatosensory evoked potentials in humans. Electroencephalogr Clin Neurophysiol. 1990;77:416–24.

    Article  PubMed  CAS  Google Scholar 

  8. Markand ON, Warren C, Mallik GS, Williams CJ. Temperature-dependent hysteresis in somatosensory and auditory evoked potentials. Electroencephalogr Clin Neurophysiol. 1990;77:425–35.

    Article  PubMed  CAS  Google Scholar 

  9. Markand ON, Warren CH, Moorthy SS, Stoelting RK, King RD. Monitoring of multimodality evoked potentials during open heart surgery under hypothermia. Electroencephalogr Clin Neurophysiol. 1984;59:432–40.

    Article  PubMed  CAS  Google Scholar 

  10. Porkkala T, Kaukinen S, Hakkinen V, Jantti V. Effects of hypothermia and sternal retractors on median nerve somatosensory evoked potentials. Acta Anaesthesiol Scand. 1997;41:843–8.

    Article  PubMed  CAS  Google Scholar 

  11. Zeitlhofer J, Steiner M, Bousek K, et al. The influence of temperature on somatosensory-evoked potentials during cardiopulmonary bypass. Eur Neurol. 1990;30:284–90.

    Article  PubMed  CAS  Google Scholar 

  12. Deakin CD, Morrison LJ, Morley PT, et al. Part 8: advanced life support: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2010;81(Suppl 1):e93–174.

    Article  PubMed  Google Scholar 

  13. Peberdy MA, Callaway CW, Neumar RW, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S768–86.

    Article  PubMed  Google Scholar 

  14. Rossetti AO, Oddo M, Logroscino G, Kaplan PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67:301–7.

    PubMed  Google Scholar 

  15. Bouwes A, Binnekade JM, Zandstra DF, et al. Somatosensory evoked potentials during mild hypothermia after cardiopulmonary resuscitation. Neurology. 2009;73:1457–61.

    Article  PubMed  CAS  Google Scholar 

  16. Bouwes A, Binnekade JM, Kuiper MA, et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol. 2012;71:206–12.

    Article  PubMed  Google Scholar 

  17. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;1:480–4.

    Article  PubMed  CAS  Google Scholar 

  18. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.

    Article  PubMed  CAS  Google Scholar 

  19. Fugate JE, Wijdicks EF, Mandrekar J, et al. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol. 2010;68:907–14.

    Article  PubMed  Google Scholar 

  20. Samaniego EA, Mlynash M, Caulfield AF, Eyngorn I, Wijman CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15:113–9.

    Article  PubMed  Google Scholar 

  21. Leithner C, Ploner CJ, Hasper D, Storm C. Does hypothermia influence the predictive value of bilateral absent N20 after cardiac arrest? Neurology. 2010;74:965–9.

    Article  PubMed  Google Scholar 

  22. Buchthal F, Rosenfalck A. Evoked action potentials and conduction velocity in human sensory nerves. Brain Res. 1966;3:1–122.

    Article  Google Scholar 

  23. Benita M, Conde H. Effects of local cooling upon conduction and synaptic transmission. Brain Res. 1972;36:133–51.

    Article  PubMed  CAS  Google Scholar 

  24. Guérit JM, Verhelst R, Rubay J, et al. The use of somatosensory evoked potentials to determine the optimal degree of hypothermia during circulatory arrest. J Card Surg. 1994;9:596–603.

    Article  PubMed  Google Scholar 

  25. Russ W, Sticher J, Scheld H, Hempelmann G. Effects of hypothermia on somatosensory evoked responses in man. Br J Anaesth. 1987;59:1484–91.

    Article  PubMed  CAS  Google Scholar 

  26. Tiainen M, Kovala TT, Takkunen OS, Roine RO. Somatosensory and brainstem auditory evoked potentials in cardiac arrest patients treated with hypothermia. Crit Care Med. 2005;33:1736–40.

    Article  PubMed  Google Scholar 

  27. Chiappa KH. Evoked potentials in clinical medicine. 3rd ed. Philadelphia: Lippincott-Raven; 1997.

    Google Scholar 

  28. Tortorici MA, Kochanek PM, Poloyac SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med. 2007;35:2196–204.

    Article  PubMed  CAS  Google Scholar 

  29. Boisseau N, Madany M, Staccini P, et al. Comparison of the effects of sevoflurane and propofol on cortical somatosensory evoked potentials. Br J Anaesth. 2002;88:785–9.

    Article  PubMed  CAS  Google Scholar 

  30. Sloan TB. Anesthetic effects on electrophysiologic recordings. J Clin Neurophysiol. 1998;15:217–26.

    Article  PubMed  CAS  Google Scholar 

  31. Gendo A, Kramer L, Hafner M, et al. Time-dependency of sensory evoked potentials in comatose cardiac arrest survivors. Intensive Care Med. 2001;27:1305–11.

    Article  PubMed  CAS  Google Scholar 

  32. Nielsen N, Hovdenes J, Nilsson F, et al. Outcome, timing and adverse events in therapeutic hypothermia after out-of-hospital cardiac arrest. Acta Anaesthesiol Scand. 2009;53:926–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jan Binnekade for help with statistical analysis and Thijs Boeree for creation of Fig. 1.

Conflict of interest

This study was supported by research grants from The Netherlands Brain Foundation, 14F06.48, and the Dutch Heart Foundation, 2007B039. Dr. Bouwes, Ms. Doesborg, Dr. Laman, Dr. Koelman, Dr. Imanse, Dr. Tromp, Dr. van Geel, Dr. van der Kooi, and Dr. Zandbergen report no conflict of interest. Dr. Horn has received research grants from The Netherlands Brain Foundation (14F06.48) and from the Dutch Heart Foundation (2007B039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Bouwes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouwes, A., Doesborg, P.G.G., Laman, D.M. et al. Hypothermia After CPR Prolongs Conduction Times of Somatosensory Evoked Potentials. Neurocrit Care 19, 25–30 (2013). https://doi.org/10.1007/s12028-013-9856-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-013-9856-8

Keywords

Navigation