Skip to main content

Advertisement

Log in

Is There Any Association Between Cerebral Vasoconstriction/Vasodilatation and Microdialysis Lactate to Pyruvate Ratio Increase?

  • ORIGINAL ARTICLE
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Although abnormally high Lactate/Pyruvate ratio (LPR) could indicate cerebral ischemia for brain injury patients, there is a debate on what is primary factor responsible for LPR increase.

Methods

A data analysis experiment is taken to test whether any association between cerebral vasodilatation/vasoconstriction and LPR increase exists. We studied 4,316 microdialysis data samples collected in an average interval of 1.3 h from 30 severe traumatic brain injury (TBI) patients. The LPR increase episodes were automatically identified using a moving time-window of 5 samples. A novel pulse morphological template matching (PMTM) algorithm was applied to the intracranial pressure (ICP) data of the corresponding patients to assess the occurrence of cerebral vasodilatation and vasoconstriction during the identified LPR increase episodes. Several analyses were performed to evaluate the association between cerebral vasoconstriction/vasodilatation and LPR increase.

Results

Results revealed that although more than half of the LPR increase episodes are not associated with any detected cerebral vasoconstriction/vasodilatation, when a vaso–change happens in association of LPR increase, it is more likely that this vaso–change is in the form of vasoconstriction rather than vasodilatation. Also for few subjects with dominant number of vasoconstriction episodes, a causality relationship between vasoconstriction and LPR increase were observed (vasoconstriction precedes LPR increase).

Conclusions

Using continuous intracranial pressure monitoring and our pulse morphological template matching (PMTM) algorithm could be potentially helpful in teasing out whether culprit cerebral vascular changes precede metabolic crisis for traumatic brain injury patients and hence guiding the management of this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U. Microdialysis in the human brain: extracellular measurements in the thalamus of parkinsonian patients. Life Sci. 1990;46:301–8.

    Article  PubMed  CAS  Google Scholar 

  2. Ungerstedt U, Rostami E. Microdialysis in neurointensive care. Curr Pharm Des. 2004;10:2145–52.

    Article  PubMed  CAS  Google Scholar 

  3. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22:3–41.

    Article  PubMed  Google Scholar 

  4. Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97:18–25.

    Article  PubMed  CAS  Google Scholar 

  5. Choi IY, Lee SP, Kim SG, Gruetter R. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab. 2001;21:653–63.

    Article  PubMed  CAS  Google Scholar 

  6. Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–74.

    Article  PubMed  CAS  Google Scholar 

  7. Laitinen L. Origin of arterial pulsation of cerebrospinal fluid. Acta Neurol Scand. 1968;44:168–76.

    Article  PubMed  CAS  Google Scholar 

  8. Czosnyka M, Guazzo E, Whitehouse M, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien). 1996;138:531–41. discussion 41-2.

    Article  CAS  Google Scholar 

  9. Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg. 1983;59:817–21.

    Article  PubMed  CAS  Google Scholar 

  10. Hu X, Xu P, Scalzo F, Vespa P, Bergsneider M. Morphological clustering and analysis of continuous intracranial pressure. IEEE Trans Biomed Eng. 2009;56:696–705.

    Article  PubMed  Google Scholar 

  11. Hu X, Glenn T, Scalzo F, et al. Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow. Physiol Meas. 2010;31:679–95.

    Article  PubMed  Google Scholar 

  12. Asgari S, Bergsneider M, Hamilton R, Vespa P, Hu X. Consistent changes in intracranial pressure waveform morphology induced by acute hypercapnic cerebral vasodilatation. Neurocrit Care. 2011;15:55–62.

    Article  PubMed  Google Scholar 

  13. Asgari S, Vespa P, Bergsneider M, Hu X. Lack of consistent intracranial pressure pulse morphological changes during episodes of microdialysis lactate/pyruvate ratio increase. Physiol Meas. 2011;32:1639–51.

    Article  PubMed  Google Scholar 

  14. Asgari S, Gonzalez N, Subudhi AW, et al. Continuous detection of cerebral vasodilatation and vasoconstriction using intracranial pulse morphological template matching. Plos one. 2012;7:e50795.

    Article  PubMed  CAS  Google Scholar 

  15. Ronne-Engstrom E, Hillered L, Flink R, Spannare B, Ungerstedt U, Carlson H. Intracerebral microdialysis of extracellular amino acids in the human epileptic focus. J Cereb Blood Flow Metab. 1992;12:873–6.

    Article  PubMed  CAS  Google Scholar 

  16. Enblad P, Valtysson J, Andersson J, et al. Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1996;16:637–44.

    Article  PubMed  CAS  Google Scholar 

  17. Hutchinson PJ, Gupta AK, Fryer TF, et al. Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab. 2002;22:735–45.

    Article  PubMed  Google Scholar 

  18. Maurer MH, Haux D, Sakowitz OW, Unterberg AW, Kuschinsky W. Identification of early markers for symptomatic vasospasm in human cerebral microdialysate after subarachnoid hemorrhage: preliminary results of a proteome-wide screening. J Cereb Blood Flow Metab. 2007;27:1675–83.

    Article  PubMed  CAS  Google Scholar 

  19. Helmy A, Carpenter KL, Menon DK, Pickard JD, Hutchinson PJ. The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab. 2011;31:658–70.

    Article  PubMed  CAS  Google Scholar 

  20. Persson L, Hillered L. Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg. 1992;76:72–80.

    Article  PubMed  CAS  Google Scholar 

  21. Enblad P, Frykholm P, Valtysson J, et al. Middle cerebral artery occlusion and reperfusion in primates monitored by microdialysis and sequential positron emission tomography. Stroke. 2001;32:1574–80.

    Article  PubMed  CAS  Google Scholar 

  22. Clausen T, Zauner A, Levasseur JE, Rice AC, Bullock R. Induced mitochondrial failure in the feline brain: implications for understanding acute post-traumatic metabolic events. Brain Res. 2001;908:35–48.

    Article  PubMed  CAS  Google Scholar 

  23. Nelson DW, Bellander BM, Maccallum RM, et al. Cerebral microdialysis of patients with severe traumatic brain injury exhibits highly individualistic patterns as visualized by cluster analysis with self-organizing maps. Crit Care Med. 2004;32:2428–36.

    Article  PubMed  CAS  Google Scholar 

  24. Bjerring PN, Hauerberg J, Jorgensen L, et al. Brain hypoxanthine concentration correlates to lactate/pyruvate ratio but not intracranial pressure in patients with acute liver failure. J Hepatol. 2010;53:1054–8.

    Article  PubMed  CAS  Google Scholar 

  25. Vespa PM, O’Phelan K, McArthur D, et al. Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit Care Med. 2007;35:1153–60.

    Article  PubMed  Google Scholar 

  26. Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K. The temporal profile of cerebral blood flow and tissue metabolites indicates sustained metabolic depression after experimental subarachnoid hemorrhage in rats. Neurosurgery. 2011;68:223–9. discussion 9-30.

    Article  PubMed  Google Scholar 

  27. Marion DW, Puccio A, Wisniewski SR, et al. Effect of hyperventilation on extracellular concentrations of glutamate, lactate, pyruvate, and local cerebral blood flow in patients with severe traumatic brain injury. Crit Care Med. 2002;30:2619–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work is partially supported by NS066008, NS076738, and UC Brain Injury Research Center (BIRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asgari, S., Vespa, P. & Hu, X. Is There Any Association Between Cerebral Vasoconstriction/Vasodilatation and Microdialysis Lactate to Pyruvate Ratio Increase?. Neurocrit Care 19, 56–64 (2013). https://doi.org/10.1007/s12028-013-9821-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-013-9821-6

Keywords

Navigation