Skip to main content

Advertisement

Log in

Prostacyclin Infusion May Prevent Secondary Damage in Pericontusional Brain Tissue

  • Practical Pearl
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Prostacyclin is a potent vasodilator, inhibitor of leukocyte adhesion, and platelet aggregation, and has been suggested as therapy for cerebral ischemia. A case of focal traumatic brain lesion that was monitored using intracerebral microdialysis, and bedside analysis and display is reported here. When biochemical signs of cerebral ischemia progressed, i.v. infusion of prostacyclin was started.

Methods

Two microdialysis catheters were placed in the penumbra zones surrounding evacuated focal brain contusions. The samples were analyzed for glucose, pyruvate, lactate, glutamate, and glycerol.

Results

When biochemical deterioration indicated progressive secondary ischemia (increase in lactate/pyruvate ratio, decrease in glucose, and increase in glutamate levels), continuous infusion of prostacyclin (0.5–1.0 ng kg−1 min−1 i.v.) was started. The treatment resulted in an improvement of the lactate/pyruvate ratios and a normalization of the interstitial levels of glucose and glutamate. The glycerol levels remained within normal limits indicating that degradation of cellular membranes had not occurred.

Conclusion

The above case supports the view that new therapies directed toward protection of the sensitive biochemical penumbra zones surrounding focal brain lesions may be evaluated by intracerebral microdialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Engström M, Polito A, Reinstrup P, et al. Intracerebral microdialysis in severe brain trauma—the importance of catheter location. J Neurosurg. 2005;102:460–9.

    Article  PubMed  Google Scholar 

  2. Nordström CH. Assessment of critical thresholds for cerebral perfusion pressure by bedside monitoring of regional energy metabolism. Neurosurg Focus. 2003;15(6):1–8. Article 5.

    Google Scholar 

  3. Nordström CH, Reinstrup P, Xu W, Gärdenfors A, Ungerstedt U. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98:809–14.

    Article  PubMed  Google Scholar 

  4. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2(7872):81–4.

    Article  PubMed  CAS  Google Scholar 

  5. Nordström CH. Treatment of increased intracranial pressure: physiological and biochemical principles underlying volume targeted therapy—the “Lund concept”. Neurocrit Care. 2005;2:83–96.

    Article  PubMed  Google Scholar 

  6. Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH. Intracerebral microdialysis in clinical practice. Normal values and variations during anaesthesia and neurosurgical operations. Neurosurgery. 2000;47:701–10.

    PubMed  CAS  Google Scholar 

  7. Bath PMW. Prostacyclin and analogues for acute ischaemic stroke. Cochrane Database Syst Rev. 2004;3:CD000177.

    PubMed  Google Scholar 

  8. Moncada S. Biology and therapeutic potential of postacyclin. Stroke. 1983;14:157–68.

    PubMed  CAS  Google Scholar 

  9. Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transform prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976;263:663–5.

    Article  PubMed  CAS  Google Scholar 

  10. Brandt L, Ljunggren B, Andersson KE, Hindfelt B, Uski T. Effects of indomethacin and prostacyclin on isolated human pial arteries contracted by CSF from patients with aneurysmal SAH. J Neurosurg. 1981;55:877–83.

    Article  PubMed  CAS  Google Scholar 

  11. Koskinen LO, Olivecrona M, Rodling-Wahlström M, Naredi S. Prostacyclin treatment normalises the MCA flow velocity in nimodipine-resistant cerebral vasospasm after aneurismal subarachnoid haemorrhage. Acta Neurochir. 2009;151:595–9.

    Article  Google Scholar 

  12. Gryglewski RJ, Nowak S, Kostka-Trabka E, et al. Treatment of ischaemic stroke with prostacyclin. Stroke. 1983;14:197–202.

    PubMed  CAS  Google Scholar 

  13. Bentzer P, Mattiason G, McIntosh T, Wieloch T, Grände PO. Infusion of prostacyclin following experimental brain injury in the rat reduces cortical lesion volume. J Neurotrauma. 2001;18:275–85.

    Article  PubMed  CAS  Google Scholar 

  14. Bentzer P, Venturoli D, Carlsson O, Grände PO. Low-dose prostacyclin improves cortical perfusion following experimental brain injury in the rat. J Neurotrauma. 2003;20:447–61.

    Article  PubMed  Google Scholar 

  15. Grände PO, Möller AD, Nordström CH, Ungerstedt U. Low-dose prostacyclin in treatment of severe brain trauma evaluated with microdialysis and jugular bulb oxygen measurements. Acta Anaesthesiol Scand. 2000;44:886–94.

    Article  PubMed  Google Scholar 

  16. Naredi S, Olivecrona M, Lindgren C, Ostlund AL, Grände PO. KoskinenLO. An outcome study o severe traumatic head injury using the “Lund therapy” with low-dose prostacyclin. Acta Anaesthesiol Scand. 2001;45:402–6.

    Article  PubMed  CAS  Google Scholar 

  17. Gärdenfors A, Nilsson F, Skagerberg G, Ungerstedt U, Nordström CH. Adverse biochemical and physiological effects of prostacyclin in experimental brain edema. Acta Anaesthesiol Scand. 2004;48:1316–21.

    Article  PubMed  Google Scholar 

  18. Ståhl N, Mellergård P, Hallström Å, Ungerstedt U, Nordström CH. Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand. 2001;45:977–85.

    Article  PubMed  Google Scholar 

  19. Jorgensen MB, Diemer NH. Selective neuronal loss after cerebral ischemia in the rat: possible role of transmitter glutamate. Acta Neurol Scand. 1982;66:536–46.

    Article  PubMed  CAS  Google Scholar 

  20. Rothman SM. Synaptic activity mediates death of hypoxic neurons. Science. 1983;220:536–7.

    Article  PubMed  CAS  Google Scholar 

  21. Samuelsson C, Hillered L, Zetterling M, et al. Cerebral glutamine and glutamate levels in relation to compromised energy metabolism: a microdialysis study in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab. 2007;27:1309–17.

    Article  PubMed  CAS  Google Scholar 

  22. Hillered L, Valtysson J, Enblad P. PerssonL. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry. 1998;64:486–91.

    Article  PubMed  CAS  Google Scholar 

  23. Nordström C-H. Ungerstedt U: intracerebral microdialysis with bedside analysis of lactate, glucose, glycerol and urea. In: Diemath HE, editor. Brain protection in severe head injury. München: W Zuckswerdt Verlag; 1996. p. 117–9.

    Google Scholar 

  24. Olivecrona M, Rodling-Wahlström M, Naredi S, Koskinen LO. Prostacyclin treatment in severe traumatic brain injury: a microdialysis and outcome study. J Neurotrauma. 2009;26:1251–62.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from the Swedish Medical Research Council (14X-003574-28D), and Lund University Hospital. We thank Katarina Nielsen, Department of Neurosurgery, Lund University Hospital, for her help with the microdialysis equipment and biochemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Henrik Nordström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinstrup, P., Nordström, CH. Prostacyclin Infusion May Prevent Secondary Damage in Pericontusional Brain Tissue. Neurocrit Care 14, 441–446 (2011). https://doi.org/10.1007/s12028-010-9486-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-010-9486-3

Keywords

Navigation