Skip to main content

Advertisement

Log in

Thyroid receptor β might be responsible for breast cancer associated with Hashimoto’s thyroiditis: a new insight into pathogenesis

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Breast cancer is the most common cancer affecting females worldwide. Often it is observed that women suffering from Hashimoto’s thyroiditis exhibit a greater propensity towards development of breast cancer. The exact mechanism for the same is unknown. However, multiple experimental evidences suggest a significant role of thyroid receptor β (TR-β) in regulating cell growth and proliferation and thus play a potent role as a tumor suppressor in several cancers, including breast cancer. Thyroid receptor β shows anti-proliferative action through mediators like β-catenin, RUNX2, PI3K/AKT, and cyclin regulation. The present review explores the link between these pathways and how they may be dysregulated due to Hashimoto’s thyroiditis. Further, we propose a new mechanism for cancer prognosis associated with Hashimoto’s thyroiditis, which may lead to the development of TR-β targeting as a novel therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rahman S, et al. Molecular insights into the relationship between autoimmune thyroid diseases and breast cancer: a critical perspective on autoimmunity and ER stress. Front Immunol. 2019 10 MAR https://doi.org/10.3389/fimmu.2019.00344.

  2. Giuliani C, Bucci I, Napolitano G. The role of the transcription factor nuclear factor-kappa B in thyroid autoimmunity. Front Endocrinol (Lausanne). 2018;9(AUG):1–8. https://doi.org/10.3389/fendo.2018.00471.

    Article  Google Scholar 

  3. Ragusa F, et al. Hashimotos’ thyroiditis: epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab. 2019;33(6):101367. https://doi.org/10.1016/j.beem.2019.101367.

    Article  PubMed  Google Scholar 

  4. Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13(4–5):391–7. https://doi.org/10.1016/j.autrev.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  5. Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet. 2017;390(10101):1550–62. https://doi.org/10.1016/S0140-6736(17)30703-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vaidya B. Chakera, and Pearce, Treatment for primary hypothyroidism: current approaches and future possibilities. Drug Des Devel Ther. 2011;6:1. https://doi.org/10.2147/DDDT.S12894.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burch HB, Cooper DS. Management of Graves disease. JAMA. 2015;314(23):2544. https://doi.org/10.1001/jama.2015.16535.

    Article  CAS  PubMed  Google Scholar 

  8. Desailloud R, Hober D. Viruses and thyroiditis: an update. Virol J. 2009;6 https://doi.org/10.1186/1743-422X-6-5

  9. Foley TP, Charron M. Radioiodine treatment of juvenile Graves disease. Exp Clin Endocrinol Diabetes. 2009;105(S 04):61–5. https://doi.org/10.1055/s-0029-1211936.

    Article  Google Scholar 

  10. Burch HB, Burman KD, Cooper DS. A 2011 survey of clinical practice patterns in the management of Graves’ disease. J Clin Endocrinol Metab. 2012;97(12):4549–58. https://doi.org/10.1210/jc.2012-2802.

    Article  CAS  PubMed  Google Scholar 

  11. Liu ZW, Masterson L, Fish B, Jani P, Chatterjee K. Thyroid surgery for Graves’ disease and Graves’ ophthalmopathy. Cochrane Database Syst Rev. 2015;2015:11. https://doi.org/10.1002/14651858.CD010576.pub2.

    Article  Google Scholar 

  12. Ralli M, et al. Autoimmunity reviews Hashimoto’s thyroiditis: an update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun Rev. 2020;19(10):102649 https://doi.org/10.1016/j.autrev.2020.102649

    Article  CAS  PubMed  Google Scholar 

  13. Y H Dong D Fu, Autoimmune thyroid disease: mechanism, genetics and current knowledge, pp. 3611–3618, 2014.

  14. Porlan E, Vidaurre OG, Rodríguez-Peña A. Thyroid hormone receptor-β (TRβ1) impairs cell proliferation by the transcriptional inhibition of cyclins D1, E and A2. Oncogene. 2008;27(19):2795–800. https://doi.org/10.1038/sj.onc.1210936.

    Article  CAS  PubMed  Google Scholar 

  15. C. Gouveia, L Capelo, B Neofiti-Papi, A Zallone, Thyroid and bone. Elsevier Inc., 2020.

  16. Furuya F, Hanover JA, Cheng SY. Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone β receptor. Proc Natl Acad Sci U S A. 2006;103(6):1780–5. https://doi.org/10.1073/pnas.0510849103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bolf EL, et al. Thyroid hormone receptor beta induces a tumor-suppressive program in anaplastic thyroid cancer. Mol Cancer Res. 2020;18(10):1443–52. https://doi.org/10.1158/1541-7786.MCR-20-0282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davidson CD, Bolf EL, Gillis NE, Cozzens LM, Tomczak JA, Carr FE. Thyroid hormone receptor beta inhibits PI3K-Akt-mTOR signaling axis in anaplastic thyroid cancer via genomic mechanisms. J Endocr Soc. 2021;5(8):1–14. https://doi.org/10.1210/jendso/bvab102.

    Article  CAS  Google Scholar 

  19. Guigon CJ, Kim DW, Zhu X, Zhao L, Cheng SY. Tumor suppressor action of liganded thyroid hormone receptor β by direct repression of β-catenin gene expression. Endocrinology. 2010;151(11):5528–36. https://doi.org/10.1210/en.2010-0475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y-C, Yeh C-T, Lin K-H. Molecular functions of thyroid hormone signaling in regulation of cancer progression and anti-apoptosis. In J Mol Sci 2019 20 4986. 2020;21(10):3554. https://doi.org/10.3390/ijms21103554.

    Article  Google Scholar 

  21. Carr FE, et al. Thyroid hormone receptor-β (TRβ) mediates runt-related transcription factor 2 (Runx2) expression in thyroid cancer cells: a novel signaling pathway in thyroid cancer. Endocrinology. 2016;157(8):3278–92. https://doi.org/10.1210/en.2015-2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bolf EL, Sprague BL, Carr FE. A linkage between thyroid and breast cancer: a common etiology? Cancer Epidemiol Biomarkers Prev. 2019;28(4):643–9. https://doi.org/10.1158/1055-9965.EPI-18-0877.

    Article  PubMed  Google Scholar 

  23. Nozhat Z, Hedayati M. PI3K/AKT pathway and its mediators in thyroid carcinomas. Mol Diagnosis Ther. 2016;20(1):13–26. https://doi.org/10.1007/s40291-015-0175-y.

    Article  CAS  Google Scholar 

  24. Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J. 2012;31(12):2714–36. https://doi.org/10.1038/emboj.2012.150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. https://doi.org/10.1186/s13045-020-00990-3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Skah S, Uchuya-Castillo J, Sirakov M, Plateroti M. The thyroid hormone nuclear receptors and the Wnt/β-catenin pathway: an intriguing liaison. Dev Biol. 2017;422(2):71–82. https://doi.org/10.1016/j.ydbio.2017.01.003.

    Article  CAS  PubMed  Google Scholar 

  27. Heublein S, et al. Thyroid hormone receptors predict prognosis in BRCA1 associated breast cancer in opposing ways. PLoS ONE. 2015;10(6):1–19. https://doi.org/10.1371/journal.pone.0127072.

    Article  CAS  Google Scholar 

  28. Bolf EL, et al. The thyroid hormone receptor-RUNX2 axis: a novel tumor suppressive pathway in breast cancer. Horm Cancer. 2020;11(1):34–41. https://doi.org/10.1007/s12672-019-00373-2.

    Article  CAS  PubMed  Google Scholar 

  29. Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol. 1999;39:295–312. https://doi.org/10.1146/annurev.pharmtox.39.1.295.

    Article  CAS  PubMed  Google Scholar 

  30. Deshpande A, Sicinski P, Hinds PW. Cyclins and cdks in development and cancer: a perspective. Oncogene. 2005;24(17):2909–15. https://doi.org/10.1038/sj.onc.1208618.

    Article  CAS  PubMed  Google Scholar 

  31. Zambrano A, et al. The thyroid hormone receptor β induces DNA damage and premature senescence. J Cell Biol. 2014;204(1):129–46. https://doi.org/10.1083/jcb.201305084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jerzak KJ, et al. Thyroid hormone receptor beta-1 expression in early breast cancer: a validation study. Breast Cancer Res Treat. 2018;171(3):709–17. https://doi.org/10.1007/s10549-018-4844-5.

    Article  CAS  PubMed  Google Scholar 

  33. Ling Y, et al. Aberrant methylation of the THRB gene in tissue and plasma of breast cancer patients. Cancer Genet Cytogenet. 2010;196(2):140–5. https://doi.org/10.1016/j.cancergencyto.2009.09.010.

    Article  CAS  PubMed  Google Scholar 

  34. Ling Y, Ling X, Fan L, Wang Y, Li Q. Mutation analysis underlying the downregulation of the thyroid hormone receptor β1 gene in the Chinese breast cancer population. Onco Targets Ther. 2015;8:2967–72. https://doi.org/10.2147/OTT.S93418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun YS, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13(11):1387–97. https://doi.org/10.7150/ijbs.21635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ellis IO. Intraductal proliferative lesions of the breast: morphology, associated risk and molecular biology. Mod Pathol. 2010;23(SUPPL. 2):1–7. https://doi.org/10.1038/modpathol.2010.56.

    Article  CAS  Google Scholar 

  37. Parthasarathy V, Rathnam U. Nipple discharge: an early warning sign of breast cancer. Int J Prev Med. 2012;3(11):810–4.

    PubMed  PubMed Central  Google Scholar 

  38. Egwuonwu O, Anyanwu S, Chianakwana G, E,. Ihekwoaba, Breast pain: clinical pattern and aetiology in a breast clinic in Eastern Nigeria. Niger J Surg. 2016;22(1):9. https://doi.org/10.4103/1117-6806.169822.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zajączkowska R, Kocot-Kępska M, Leppert W, Wordliczek J. Bone pain in cancer patients: mechanisms and current treatment. Int J Mol Sci. 2019;20(23):65–75. https://doi.org/10.3390/ijms20236047.

    Article  CAS  Google Scholar 

  40. Osborne MP, Borgen PI. Role of mastectomy in breast cancer. Surg Clin North Am. 1990;70(5):1023–46. https://doi.org/10.1016/S0039-6109(16)45228-X.

    Article  CAS  PubMed  Google Scholar 

  41. Gu G, et al. Targeting thyroid hormone receptor beta in triple-negative breast cancer. Breast Cancer Res Treat. 2015;150(3):535–45. https://doi.org/10.1007/s10549-015-3354-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Voutsadakis IA. The TSH/thyroid hormones axis and breast cancer. J Clin Med. 2022;11(3):1–13. https://doi.org/10.3390/jcm11030687.

    Article  CAS  Google Scholar 

  43. Martínez-Iglesias O, et al. Thyroid hormone receptor β1 acts as a potent suppressor of tumor invasiveness and metastasis. Cancer Res. 2009;69(2):501–9. https://doi.org/10.1158/0008-5472.CAN-08-2198.

    Article  CAS  PubMed  Google Scholar 

  44. López-Mateo I, et al. Thyroid hormone receptor β inhibits self-renewal capacity of breast cancer stem cells. Thyroid. 2020;30(1):116–32. https://doi.org/10.1089/thy.2019.0175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ozmen T, Gulluoglu BM, Yegen CS, Soran A. Autoimmune thyroid disease and breast cancer prognosis. J Breast Heal. 2015;11(2):67–71. https://doi.org/10.5152/tjbh.2015.2462.

    Article  Google Scholar 

  46. Graceffa G, et al. Breast cancer in previously thyroidectomized patients: which thyroid disorders are a risk factor? Futur Sci OA. 2021;7:5. https://doi.org/10.2144/fsoa-2021-0029.

    Article  CAS  Google Scholar 

  47. Bach L, Kostev K, Schiffmann L, Kalder M. Association between thyroid gland diseases and breast cancer: a case–control study. Breast Cancer Res Treat. 2020;182(1):207–13. https://doi.org/10.1007/s10549-020-05675-6.

    Article  CAS  PubMed  Google Scholar 

  48. Muller I, et al. High prevalence of breast cancer in patients with benign thyroid diseases. J Endocrinol Invest. 2011;34(5):349–52. https://doi.org/10.3275/7141.

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y-K, Lin C-L, Cheng FT-F, Sung F-C, Kao C-H. Cancer risk in patients with Hashimoto’s thyroiditis: a nationwide cohort study. Br J Cancer. 2013;109:92496–501. https://doi.org/10.1038/bjc.2013.597.

    Article  Google Scholar 

  50. Ates I, Yilmaz FM, Altay M, Yilmaz N, Berker D, Güler S. The relationship between oxidative stress and autoimmunity in Hashimoto’s thyroiditis. Eur J Endocrinol. 2015;173(6):791–9. https://doi.org/10.1530/EJE-15-0617.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Delhi Technological University

Author information

Authors and Affiliations

Authors

Contributions

Muskaan Dhingra and Shayon Mahalanobis: writing—original draft and data collection.

Dr. Asmita Das contributed towards conceptualization, supervision, reviewing, and editing.

Corresponding author

Correspondence to Asmita Das.

Ethics declarations

Ethics approval

The present study does not contain any human participants or animals and has been carried out in the Department of Biotechnology, Delhi Technological University, following all ethical principles of the university.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhingra, M., Mahalanobis, S. & Das, A. Thyroid receptor β might be responsible for breast cancer associated with Hashimoto’s thyroiditis: a new insight into pathogenesis. Immunol Res 70, 441–448 (2022). https://doi.org/10.1007/s12026-022-09288-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-022-09288-7

Keywords

Navigation