Skip to main content

Advertisement

Log in

Host miRNA and immune cell interactions: relevance in nano-therapeutics for human health

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Around 2200 miRNA (microRNA) genes were found in the human genome. miRNAs are arranged in clusters within the genome and share the same transcriptional regulatory units. It has been revealed that approximately 50% of miRNAs elucidated in the genome are transcribed from non-protein-coding genes, and the leftover miRNAs are present in the introns of coding sequences. We are now approaching a stage in which miRNA diagnostics and therapies can be established confidently, and several commercial efforts are underway to carry these innovations from the bench to the clinic. MiRNAs control many of the significant cellular activities such as production, differentiation, growth, and metabolism. Particularly in the immune system, miRNAs have emerged as a crucial biological component during diseased state and homeostasis. miRNAs have been found to regulate inflammatory responses and autoimmune disorders. Moreover, each miRNA targets multiple genes simultaneously, making miRNAs promising tools as diagnostic biomarkers and as remedial targets. Still, one of the major obstacles in miRNA-based approaches is the achievement of specific and efficient systemic delivery of miRNAs. To overcome these challenges, nanoformulations have been synthesized to protect miRNAs from degradation and enhance cellular uptake. The current review deals with the miRNA-mediated regulation of the recruitment and activation of immune cells, especially in the tumor microenvironment, viral infection, inflammation, and autoimmunity. The nano-based miRNA delivery modes are also discussed here, especially in the context of immune modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Shu J, Silva BVRE, Gao T, Xu Z, Cui J. Dynamic and modularized microRNA regulation and its implication in human cancers. Sci Rep. 2017;7:13356. https://doi.org/10.1038/s41598-017-13470-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee H-M, Nguyen DT, Lu L-F. Progress and challenge of microRNA research in immunity. Front Genet. 2014;5:178. https://doi.org/10.3389/fgene.2014.00178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fernández-Messina L, Gutiérrez-Vázquez C, Rivas-García E, Sánchez-Madrid F, de la Fuente H. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell. 2015;107:61–77. https://doi.org/10.1111/boc.201400081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Desi N, Tay Y. The butterfly effect of RNA alterations on transcriptomic equilibrium. Cells. 2019;8:1634. https://doi.org/10.3390/cells8121634.

    Article  CAS  PubMed Central  Google Scholar 

  5. Fan J, Feng Y, Zhang R, et al. A simplified system for the effective expression and delivery of functional mature microRNAs in mammalian cells. Cancer Gene Ther. 2020;27:424–37. https://doi.org/10.1038/s41417-019-0113-y.

    Article  CAS  PubMed  Google Scholar 

  6. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–66. https://doi.org/10.1261/rna.7135204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ketting RF. A dead end for microRNAs. Cell. 2007;131:1226–7. https://doi.org/10.1016/j.cell.2007.12.004.

    Article  CAS  PubMed  Google Scholar 

  8. Pradhan AK, Bhoopathi P, Talukdar S, et al. MDA-7/IL-24 regulates the miRNA processing enzyme DICER through downregulation of MITF. Proc Natl Acad Sci U S A. 2019;116:5687–92. https://doi.org/10.1073/pnas.1819869116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen TA, Jo MH, Choi Y-G, et al. Functional anatomy of the human microprocessor. Cell. 2015;161:1374–87. https://doi.org/10.1016/j.cell.2015.05.010.

    Article  CAS  PubMed  Google Scholar 

  10. Gareev I, Beylerli O, Yang G, et al. The current state of miRNAs as biomarkers and therapeutic tools. Clin Exp Med. 2020;20:349–59. https://doi.org/10.1007/s10238-020-00627-2.

    Article  CAS  PubMed  Google Scholar 

  11. Roberts TC. The microRNA biology of the mammalian nucleus. Mol Ther–Nucleic Acids. 2014;3:e188. https://doi.org/10.1038/mtna.2014.40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol. 2019;51:11–7. https://doi.org/10.1016/j.cbpa.2019.01.024.

    Article  CAS  PubMed  Google Scholar 

  13. Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA. 2019;25:1–16. https://doi.org/10.1261/rna.068692.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33. https://doi.org/10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee SWL, Paoletti C, Campisi M, et al. MicroRNA delivery through nanoparticles. J Control Release. 2019;313:80–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;3(9):402. https://doi.org/10.3389/fendo.2018.00402.

    Article  Google Scholar 

  17. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics. 2014;2014:970607. https://doi.org/10.1155/2014/970607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J. 2007;26:775–83. https://doi.org/10.1038/sj.emboj.7601512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol. 2004;339:327–35. https://doi.org/10.1016/j.jmb.2004.03.065.

    Article  CAS  PubMed  Google Scholar 

  20. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12:99–110. https://doi.org/10.1038/nrg2936.

    Article  CAS  PubMed  Google Scholar 

  21. Ipsaro JJ, Joshua-Tor L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol. 2015;22:20–8. https://doi.org/10.1038/nsmb.293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009;7(4):147–54. https://doi.org/10.1016/S1672-0229(08)60044-3.

    Article  CAS  PubMed  Google Scholar 

  23. Xu W, San Lucas A, Wang Z, Liu Y. Identifying microRNA targets in different gene regions. BMC Bioinformatics. 2014;15(Suppl. 7):S4. https://doi.org/10.1186/1471-2105-15-S7-S.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA. 2008;105:14879–84. https://doi.org/10.1073/pnas.0803230105.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang J, ZhouW Liu Y, Liu T, Li C, Wang L. Oncogenic role of microRNA- 532–5p in human colorectal cancer via targeting of the 5′ UTR of RUNX3. Oncol Lett. 2018;15:7215–20. https://doi.org/10.3892/ol.2018.8217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS ONE. 2013;8(11):e79467. https://doi.org/10.1371/journal.pone.0079467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miao L, Yao H, Li C, Pu M, Yao X, Yang H, et al. A dual inhibition: microRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. Biochim Biophys Acta. 2016;1859:650–62. https://doi.org/10.1016/j.bbagrm.2016.02.016.

    Article  CAS  PubMed  Google Scholar 

  28. Gagnon KT, Li L, Chu Y, Janowski BA, Corey DR. RNAi factors are present and active in human cell nuclei. Cell Rep. 2014;6:211–21. https://doi.org/10.1016/j.celrep.2013.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W. Inhibition of translational initiation by Let-7 microRNA in human cells. Science. 2005;309(5740):1573–6. https://doi.org/10.1126/science.1115079.

    Article  CAS  PubMed  Google Scholar 

  30. Barman B, Bhattacharyya SN. mRNA targeting to endoplasmic reticulum precedes ago protein interaction and microRNA (miRNA)-mediated translation repression in mammalian cells. J Biol Chem. 2015;290(41):24650–6. https://doi.org/10.1074/jbc.C115.661868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11:1143–9. https://doi.org/10.1038/ncb1929.

    Article  CAS  PubMed  Google Scholar 

  32. Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X. PremicroRNA and mature microRNA in human mitochondria. PLoS ONE. 2011;6:e20220. https://doi.org/10.1371/journal.pone.0020220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell. 2014;158:607–19. https://doi.org/10.1016/j.cell.2014.05.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishi K, Takahashi T, Suzawa M, Miyakawa T, Nagasawa T, Ming Y, et al. Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein. Nucleic Acids Res. 2015;43:9856–73. https://doi.org/10.1093/nar/gkv1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Raisch J. Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol. 2013;19:2985. https://doi.org/10.3748/wjg.v19.i20.2985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10:111–22. https://doi.org/10.1038/nri2708.

    Article  CAS  PubMed  Google Scholar 

  37. Janeway CA Jr, Travers P, Walport M, Capra JD. Immunobiology: the immune system in health and disease, 5th ed.New York: Garland Science; 2001.

  38. Rossetti S, Sacchi N. RUNX1: a microRNA hub in normal and malignant hematopoiesis. Int J Mol Sci. 2013;14:1566–88. https://doi.org/10.3390/ijms14011566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hortu HO, Karaca E, Sozeri B, et al. Evaluation of the effects of miRNAs in familial Mediterranean fever. Clin Rheumatol. 2019;38:635–43. https://doi.org/10.1007/s10067-017-3914-0.

    Article  PubMed  Google Scholar 

  40. Meira-Strejevitch CS, Pereira I de S, Hippólito DDC, et al. Ocular toxoplasmosis associated with up-regulation of miR-155–5p/miR-29c-3p and down-regulation of miR-21–5p/miR-125b-5p. Cytokine. 2020;127:154990. https://doi.org/10.1016/j.cyto.2020.154990.

  41. Georgantas RW, Hildreth R, Morisot S, et al. CD34 hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A. 2007;104:2750–5. https://doi.org/10.1073/pnas.0610983104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao JL, Rao DS, Boldin MP, et al. NF-κB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A. 2011;108:9184–9. https://doi.org/10.1073/pnas.1105398108.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Duroux-Richard I, Roubert C, Ammari M, et al. miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood. 2016;128:3125–36. https://doi.org/10.1182/blood-2016-02-697003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Le MTN, Shyh-Chang N, Khaw SL, et al. Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet. 2011;7:e1002242. https://doi.org/10.1371/journal.pgen.1002242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bazzoni F, Rossato M, Fabbri M, et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci U S A. 2009;106:5282–7. https://doi.org/10.1073/pnas.0810909106.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li Q-J, Chau J, Ebert PJR, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007;129:147–61. https://doi.org/10.1016/j.cell.2007.03.008.

    Article  CAS  PubMed  Google Scholar 

  47. Kuo G, Wu C-Y, Yang H-Y. MiR-17-92 cluster and immunity. J Formos Med Assoc. 2019;118:2–6. https://doi.org/10.1016/j.jfma.2018.04.013.

    Article  CAS  PubMed  Google Scholar 

  48. Smith NL, Wissink EM, Grimson A, Rudd BD. MiR-150 regulates differentiation and cytolytic effector function in CD8+ T cells. Sci Rep. 2015;5:16399. https://doi.org/10.1038/srep16399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee J, Park H, Eom J, Kang SG. MicroRNA-mediated regulation of the development and functions of follicular helper T cells. Immune Netw. 2018;18:e7. https://doi.org/10.4110/in.2018.18.e7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yu D, Rao S, Tsai LM, et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity. 2009;31:457–68. https://doi.org/10.1016/j.immuni.2009.07.002.

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi H, Kanno T, Nakayamada S, et al. TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol. 2012;13:587–95. https://doi.org/10.1038/ni.2286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baumjohann D, Kageyama R, Clingan JM, et al. The microRNA cluster miR-17 92 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nat Immunol. 2013;14:840–8. https://doi.org/10.1038/ni.2642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu L-F, Boldin MP, Chaudhry A, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010;142:914–29. https://doi.org/10.1016/j.cell.2010.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu L-F, Thai T-H, Calado DP, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity. 2009;30:80–91. https://doi.org/10.1016/j.immuni.2008.11.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8. https://doi.org/10.1038/nature03702.

    Article  CAS  PubMed  Google Scholar 

  56. Liu Y, Zhao Q, Xi T, Zheng L, Li X. MicroRNA-9 as a paradoxical but critical regulator of cancer metastasis: implications in personalized medicine. Genes Dis. 2020. https://doi.org/10.1016/j.gendis.2020.10.005.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shin JH, Shin DH, Kim JS. Let-7 miRNA and CDK4 siRNA co-encapsulated in herceptin-conjugated liposome for breast cancer stem cells. Asian J Pharm Sci. 2020;15:472–81. https://doi.org/10.1016/j.ajps.2019.03.001.

    Article  PubMed  Google Scholar 

  58. Li Y, Zhang Y, Zou Y, Duan S. The paradoxical roles of miR-4295 in human cancer: implications in pathogenesis and personalized medicine. Genes Dis. 2020. https://doi.org/10.1016/j.gendis.2020.09.007.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fujita Y, Kojima K, Ohhashi R, et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem. 2010;285:19076–84. https://doi.org/10.1074/jbc.M109.079525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hirata Y, Murai N, Yanaihara N, et al. MicroRNA-21 is a candidate driver gene for 17q23-25 amplification in ovarian clear cell carcinoma. BMC Cancer. 2014;14:799. https://doi.org/10.1186/1471-2407-14-799.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li H, Yuan S-M, Yang M, et al. High intensity focused ultrasound inhibits melanoma cell migration and metastasis through attenuating microRNA-21-mediated PTEN suppression. Oncotarget. 2016;7:50450–60. https://doi.org/10.18632/oncotarget.10433.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang F, Liu M, Li X, Tang H. MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. FEBS Lett. 2013;587:488–95. https://doi.org/10.1016/j.febslet.2013.01.016.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang H, Luo X-Q, Feng D-D, et al. Upregulation of microRNA-125b contributes to leukemogenesis and increases drug resistance in pediatric acute promyelocytic leukemia. Mol Cancer. 2011;10:108. https://doi.org/10.1186/1476-4598-10-108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arrieta VA, Cacho-Diaz B, Zhao J, et al. The possibility of cancer immune editing in gliomas A critical review. Oncoimmunology. 2018;7:e1445458. https://doi.org/10.1080/2162402X.2018.1445458.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Omar HA, El-Serafi AT, Hersi F, et al. Immunomodulatory microRNAs in cancer: targeting immune checkpoints and the tumor microenvironment. FEBS J. 2019;286:3540–57. https://doi.org/10.1111/febs.15000.

    Article  CAS  PubMed  Google Scholar 

  66. Kuninty PR, Schnittert J, Storm G, Prakash J. MicroRNA targeting to modulate tumor microenvironment. Front Oncol. 2016;19(6):3. https://doi.org/10.3389/fonc.2016.00003.

    Article  Google Scholar 

  67. Wang B, Wang Q, Wang Z, Jiang J, et al. Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res. 2014;74(20):5746–57. https://doi.org/10.1158/0008-5472.CAN-13-2563.

    Article  CAS  PubMed  Google Scholar 

  68. Cheung IY, Farazi TA, Ostrovnaya I, et al. Deep MicroRNA sequencing reveals downregulation of miR-29a in neuroblastoma central nervous system metastasis. Genes Chromosomes Cancer. 2014;53(10):803–14. https://doi.org/10.1002/gcc.22189.

    Article  CAS  PubMed  Google Scholar 

  69. Gonzalez Plaza JJ. Current roles of microRNAs in infectious diseases—advancing into healthcare. Infektološki glasnik. 2016;36:5–15.

    Google Scholar 

  70. Maudet C, Mano M, Eulalio A. MicroRNAs in the interaction between host and bacterial pathogens. FEBS Lett. 2014;588:4140–7. https://doi.org/10.1016/j.febslet.2014.08.002.

    Article  CAS  PubMed  Google Scholar 

  71. Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science. 2005;309:1577–81. https://doi.org/10.1126/science.1113329.

    Article  CAS  PubMed  Google Scholar 

  72. Machlin ES, Sarnow P, Sagan SM. Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci U S A. 2011;108:3193–8. https://doi.org/10.1073/pnas.1012464108.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sarnow P, Sagan SM. Unraveling the mysterious interactions between hepatitis C virus RNA and liver-specific microRNA-122. Annu Rev Virol. 2016;3:309–32. https://doi.org/10.1146/annurev-virology-110615-042409.

    Article  CAS  PubMed  Google Scholar 

  74. Cameron JE, Yin Q, Fewell C, et al. Epstein-Barr virus latent membrane protein 1 induces cellular microRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol. 2008;82:1946–58. https://doi.org/10.1128/JVI.02136-07.

    Article  CAS  PubMed  Google Scholar 

  75. Lind EF, Elford AR, Ohashi PS. Micro-RNA 155 is required for optimal CD8+ T cell responses to acute viral and intracellular bacterial challenges. J Immunol. 2013;190:1210–6. https://doi.org/10.4049/jimmunol.1202700.

    Article  CAS  PubMed  Google Scholar 

  76. Gracias DT, Stelekati E, Hope JL, et al. The microRNA miR-155 controls CD8+ T cell responses by regulating interferon signaling. Nat Immunol. 2013;14:593–602. https://doi.org/10.1038/ni.2576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sullivan CS, Grundhoff AT, Tevethia S, et al. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature. 2005;435:682–6. https://doi.org/10.1038/nature03576.

    Article  CAS  PubMed  Google Scholar 

  78. Ceribelli A, Yao B, Dominguez-Gutierrez PR, Chan EKL. Lupus T cells switched on by DNA hypomethylation via microRNA? Arthritis Rheum. 2011;63:1177–81. https://doi.org/10.1002/art.30192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Junker A, Hohlfeld R, Meinl E. The emerging role of microRNAs in multiple sclerosis. Nat Rev Neurol. 2011;7:56–9. https://doi.org/10.1038/nrneurol.2010.179.

    Article  CAS  PubMed  Google Scholar 

  80. Li L, Zuo X, Liu D, et al. The profiles of miRNAs and lncRNAs in peripheral blood neutrophils exosomes of diffuse cutaneous systemic sclerosis. J Dermatol Sci. 2020;98:88–97. https://doi.org/10.1016/j.jdermsci.2020.02.009.

    Article  CAS  PubMed  Google Scholar 

  81. Amarilyo G, La Cava A. miRNA in systemic lupus erythematosus. Clin Immunol. 2012;144:26–31. https://doi.org/10.1016/j.clim.2012.04.005.

    Article  CAS  PubMed  Google Scholar 

  82. Qu Z, Li W, Fu B. MicroRNAs in autoimmune diseases. Biomed Res Int. 2014;2014:527895. https://doi.org/10.1155/2014/527895.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Aguennouz M, Guarneri F, Oteri R, et al. Serum levels of miRNA-21-5p in vitiligo patients and effects of miRNA-21-5p on SOX5, beta-catenin, CDK2 and MITF protein expression in normal human melanocytes. J Dermatol Sci. 2021;101:22–9. https://doi.org/10.1016/j.jdermsci.2020.10.014.

    Article  CAS  PubMed  Google Scholar 

  84. Kriegsmann M, Randau TM, Gravius S, et al. Expression of miR-146a, miR-155, and miR-223 in formalin-fixed paraffin-embedded synovial tissues of patients with rheumatoid arthritis and osteoarthritis. Virchows Arch. 2016;469:93–100. https://doi.org/10.1007/s00428-016-1939-4.

    Article  CAS  PubMed  Google Scholar 

  85. Seddiki N, Brezar V, Ruffin N, et al. Role of miR-155 in the regulation of lymphocyte immune function and disease. Immunology. 2014;142:32–8. https://doi.org/10.1111/imm.12227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dai Y, Huang Y-S, Tang M, et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus. 2007;16:939–46. https://doi.org/10.1177/0961203307084158.

    Article  CAS  PubMed  Google Scholar 

  87. Tang Y, Luo X, Cui H, et al. MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 2009;60:1065–75. https://doi.org/10.1002/art.24436.

    Article  CAS  PubMed  Google Scholar 

  88. Zhao X, Tang Y, Qu B, et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum. 2010;62:3425–35. https://doi.org/10.1002/art.27632.

    Article  CAS  PubMed  Google Scholar 

  89. Sonkoly E, Wei T, Janson PCJ, et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS ONE. 2007;2:e610. https://doi.org/10.1371/journal.pone.0000610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Duttagupta R, DiRienzo S, Jiang R, et al. Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis. PLoS ONE. 2012;7:e31241. https://doi.org/10.1371/journal.pone.0031241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Paraskevi A, Theodoropoulos G, Papaconstantinou I, et al. Circulating microRNA in inflammatory bowel disease. J Crohns Colitis. 2012;6:900–4. https://doi.org/10.1016/j.crohns.2012.02.006.

    Article  PubMed  Google Scholar 

  92. Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res. 2010;70:7027–30. https://doi.org/10.1158/0008-5472.CAN-10-2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wischhusen JC, Chowdhury SM, Lee T, et al. Ultrasound-mediated delivery of miRNA-122 and anti-miRNA-21 therapeutically immunomodulates murine hepatocellular carcinoma in vivo. J Control Release. 2020;321:272–84. https://doi.org/10.1016/j.jconrel.2020.01.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Takagawa Y, Gen Y, Muramatsu T, et al. miR-1293, a candidate for miRNA-based cancer therapeutics, simultaneously targets BRD4 and the DNA repair pathway. Mol Ther. 2020;28:1494–505. https://doi.org/10.1016/j.ymthe.2020.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yu J, Chen S, Niu Y, et al. Functional significance and therapeutic potential of miRNA-20b-5p in esophageal squamous cell carcinoma. Mol Ther–Nucleic Acids. 2020;21:315–31. https://doi.org/10.1016/j.omtn.2020.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nana-Sinkam SP, Croce CM. MicroRNAs as therapeutic targets in cancer. Transl Res. 2011;157:216–25. https://doi.org/10.1016/j.trsl.2011.01.013.

    Article  CAS  PubMed  Google Scholar 

  97. Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with “antagomirs.” Nature. 2005;438:685–9. https://doi.org/10.1038/nature04303.

    Article  CAS  PubMed  Google Scholar 

  98. Cerro-Herreros E, Sabater-Arcis M, Fernandez-Costa JM, et al. miR-23b and miR-218 silencing increase muscleblind-like expression and alleviate myotonic dystrophy phenotypes in mammalian models. Nat Commun. 2018;9:2482. https://doi.org/10.1038/s41467-018-04892-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thakral S, Ghoshal K. miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Curr Gene Ther. 2015;15:142–50. https://doi.org/10.2174/1566523214666141224095610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Malik S, Lim J, Slack FJ, Braddock DT, Bahal R. Next generation miRNA inhibition using short anti-seed PNAs encapsulated in PLGA nanoparticles. J Control Release. 2020;327:406–19. https://doi.org/10.1016/j.jconrel.2020.08.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fabani MM, Abreu-Goodger C, Williams D, et al. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res. 2010;38:4466–75. https://doi.org/10.1093/nar/gkq160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meng L, Liu C, Lü J, et al. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells. Nat Commun. 2017;8:13964. https://doi.org/10.1038/ncomms13964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT. Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater. 2012;11:316–22. https://doi.org/10.1038/nmat3253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–17. https://doi.org/10.1016/j.cell.2009.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bader AG. miR-34 – a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120. https://doi.org/10.3389/fgene.2012.00120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huang W. MicroRNAs: biomarkers, diagnostics, and therapeutics. Methods Mol Biol. 2017;1617:57–67. https://doi.org/10.1007/978-1-4939-7046-9_4.

    Article  CAS  PubMed  Google Scholar 

  107. Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. J Cell Physiol. 2016;23:25–30. https://doi.org/10.1002/jcp.25056.

    Article  CAS  Google Scholar 

  108. Lawrie CH. MicroRNAs in medicine. Hoboken: John Wiley & Sons Inc; 2013. https://doi.org/10.1002/9781118300312.

    Book  Google Scholar 

  109. Palmero EI, de Campos SG, Campos M, et al. Mechanisms and role of microRNA deregulation in cancer onset and progression. Genet Mol Biol. 2011;34:363–70. https://doi.org/10.1590/S1415-47572011000300001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28:369–78. https://doi.org/10.1007/s10555-009-9188-5.

    Article  CAS  PubMed  Google Scholar 

  111. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res. 2011;717(1–2):85–90. https://doi.org/10.1016/j.mrfmmm.2011.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8. https://doi.org/10.1073/pnas.0804549105.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Park NJ, Zhou H, Elashoff D, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15:5473–7. https://doi.org/10.1158/1078-0432.CCR-09-0736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. He B, Zhao Z, Cai Q, Zhang Y, et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci. 2020;16(14):2628–47. https://doi.org/10.7150/ijbs.47203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Eichmüller SB, Osen W, Mandelboim O, et al. Immune modulatory microRNAs involved in tumor attack and tumor immune escape. J Natl Cancer Inst. 2017;109(10): djx034. https://doi.org/10.1093/jnci/djx034.

  116. Yang Q, Cao W, Wang Z, et al. Regulation of cancer immune escape: the roles of miRNAs in immune checkpoint proteins. Cancer Lett. 2018;1(431):73–84. https://doi.org/10.1016/j.canlet.2018.05.015.

    Article  CAS  Google Scholar 

  117. Harborth J, Elbashir SM, Vandenburgh K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 2003;13:83–105. https://doi.org/10.1089/108729003321629638.

    Article  CAS  PubMed  Google Scholar 

  118. Landen CN Jr, Chavez-Reyes A, Bucana C, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 2005;65:6910–8. https://doi.org/10.1158/0008-5472.

    Article  PubMed  Google Scholar 

  119. Myoung SS, Kasinski AL. Strategies for safe and targeted delivery of microRNA therapeutics. In MicroRNAs in diseases and disorders 2019 May 7 (pp. 386–415). https://doi.org/10.1039/9781788016421-00386.

  120. Cortez MA, Ivan C, Valdecanas D, et al. PDL1 regulation by p53 via miR-34. J Natl Cancer Inst. 2015;108(1):303. https://doi.org/10.1093/jnci/djv303.

    Article  CAS  Google Scholar 

  121. Wiggins JF, Ruffino L, Kelnar K, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30. https://doi.org/10.1158/0008-5472.CAN-10-0655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Robbins M, Judge A, Ambegia E, et al. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum Gene Ther. 2008;19(10):991–9. https://doi.org/10.1089/hum.2008.131.

    Article  CAS  PubMed  Google Scholar 

  123. Cortez MA, Anfossi S, Ramapriyan R, et al. Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes Cancer. 2019;58(4):244–53. https://doi.org/10.1002/gcc.22725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fernandez-Piñeiro I, Badiola I, Sanchez A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv. 2017;35:350–60. https://doi.org/10.1016/j.biotechadv.2017.03.002.

    Article  CAS  PubMed  Google Scholar 

  125. Vaid P, Raizada P, Saini AK, Saini RV. Biogenic silver, gold and copper nanoparticles - a sustainable green chemistry approach for cancer therapy. Sustain Chem Pharm. 2020;16:100247. https://doi.org/10.1016/j.scp.2020.100247.

    Article  Google Scholar 

  126. Kumari R, Saini AK, Kumar A, Saini RV. Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. J Biol Inorg Chem. 2020;25:23–37. https://doi.org/10.1007/s00775-019-01729-3.

    Article  CAS  PubMed  Google Scholar 

  127. Lu C, Han HD, Mangala LS, et al. Regulation of tumor angiogenesis by EZH2. Cancer Cell. 2010;18:185–97. https://doi.org/10.1016/j.ccr.2010.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen X, Mangala LS, Mooberry L, et al. Identifying and targeting angiogenesis-related microRNAs in ovarian cancer. Oncogene. 2019;38:6095–108. https://doi.org/10.1038/s41388-019-0862-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Knipe JM, Strong LE, Peppas NA. Enzyme- and pH-responsive microencapsulated nanogels for oral delivery of siRNA to induce TNF-α knockdown in the intestine. Biomacromol. 2016;17:788–97. https://doi.org/10.1021/acs.biomac.5b01518.

    Article  CAS  Google Scholar 

  130. Liechty WB, Scheuerle RL, Vela Ramirez JE, Peppas NA. Cytoplasmic delivery of functional siRNA using pH-responsive nanoscale hydrogels. Int J Pharm. 2019;562:249–57. https://doi.org/10.1016/j.ijpharm.2019.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Forbes DC, Peppas NA. Polymeric nanocarriers for siRNA delivery to murine macrophages. Macromol Biosci. 2014;14:1096–105. https://doi.org/10.1002/mabi.201400027.

    Article  CAS  PubMed  Google Scholar 

  132. Zheng B, Chen L, Pan C-C, et al. Targeted delivery of miRNA-204-5p by PEGylated polymer nanoparticles for colon cancer therapy. Nanomedicine. 2018;13:769–85. https://doi.org/10.2217/nnm-2017-0345.

    Article  CAS  PubMed  Google Scholar 

  133. Peng Z-H, Xie Y, Wang Y, et al. Dual-function polymeric HPMA prodrugs for the delivery of miRNA. Mol Pharm. 2017;14:1395–404. https://doi.org/10.1021/acs.molpharmaceut.6b00999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gao S, Tian H, Guo Y, et al. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomater. 2015;25:184–93. https://doi.org/10.1016/j.actbio.2015.07.020.

    Article  CAS  PubMed  Google Scholar 

  135. Luo Q, Feng Y, Xie Y, et al. Nanoparticle–microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine. 2019;17:188–97. https://doi.org/10.1016/j.nano.2019.01.007.

    Article  CAS  PubMed  Google Scholar 

  136. Hall A, Lächelt U, Bartek J, et al. Polyplex evolution: understanding biology, optimizing performance. Mol Ther. 2017;25:1476–90. https://doi.org/10.1016/j.ymthe.2017.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ulasov AV, Khramtsov YV, Trusov GA, et al. Properties of PEI-based polyplex nanoparticles that correlate with their transfection efficacy. Mol Ther. 2011;19:103–12. https://doi.org/10.1038/mt.2010.233.

    Article  CAS  PubMed  Google Scholar 

  138. Gong M, Liu H, Sun N, Xie Y, et al. Polyethylenimine-dextran-coated magnetic nanoparticles loaded with miR-302b suppress osteosarcoma in vitro and in vivo. Nanomedicine. 2020;15:711–23. https://doi.org/10.2217/nnm-2019-0218.

    Article  CAS  PubMed  Google Scholar 

  139. Dai Y, Zhang X. MicroRNA delivery with bioreducible polyethylenimine as a non-viral vector for breast cancer gene therapy. Macromol Biosci. 2019;19:1800445. https://doi.org/10.1002/mabi.201800445.

    Article  CAS  Google Scholar 

  140. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62:12–27. https://doi.org/10.1016/j.addr.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  141. Louw AM, Kolar MK, Novikova LN, et al. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine. 2016;12:643–53. https://doi.org/10.1016/j.nano.2015.10.011.

    Article  CAS  PubMed  Google Scholar 

  142. Ning Q, Liu Y-F, Ye P-J, et al. Delivery of liver-specific miRNA-122 using a targeted macromolecular prodrug toward synergistic therapy for hepatocellular carcinoma. ACS Appl Mater Interfaces. 2019;11:10578–88. https://doi.org/10.1021/acsami.9b00634.

    Article  CAS  PubMed  Google Scholar 

  143. Gaur S, Wen Y, Song JH, et al. Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget. 2015;6:29161–77. https://doi.org/10.18632/oncotarget.4971.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Cosco D, Cilurzo F, Maiuolo J, et al. Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myeloma. Sci Rep. 2015;5:17579. https://doi.org/10.1038/srep17579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Arora S, Swaminathan SK, Kirtane A, et al. Synthesis, characterization, and evaluation of poly (D, L-lactide-co-glycolide)-based nanoformulation of miRNA-150: potential implications for pancreatic cancer therapy. Int J Nanomed. 2014;9:2933–42. https://doi.org/10.2147/IJN.S61949.

    Article  CAS  Google Scholar 

  146. Wang S, Zhang J, Wang Y, Chen M. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine. 2016;12:411–20. https://doi.org/10.1016/j.nano.2015.09.014.

    Article  CAS  PubMed  Google Scholar 

  147. Cai C, Xie Y, Wu L, et al. PLGA-based dual targeted nanoparticles enhance miRNA transfection efficiency in hepatic carcinoma. Sci Rep. 2017;7:46250. https://doi.org/10.1038/srep46250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kapadia CH, Ioele SA, Day ES. Layer-by-layer assembled PLGA nanoparticles carrying miR-34a cargo inhibit the proliferation and cell cycle progression of triple-negative breast cancer cells. J Biomed Mater Res A. 2020;108:601–13. https://doi.org/10.1002/jbm.a.36840.

    Article  CAS  PubMed  Google Scholar 

  149. Zhang J, Chen C, Fu H, et al. MicroRNA-125a-loaded polymeric nanoparticles alleviate systemic lupus erythematosus by restoring effector/regulatory T cells balance. ACS Nano. 2020;14:4414–29. https://doi.org/10.1021/acsnano.9b09998.

    Article  CAS  PubMed  Google Scholar 

  150. Bahreyni A, Alibolandi M, Ramezani M, et al. A novel MUC1 aptamer-modified PLGA-epirubicin-PβAE-antimir-21 nanocomplex platform for targeted co-delivery of anticancer agents in vitro and in vivo. Colloids Surf B Biointerfaces. 2019;175:231–8. https://doi.org/10.1016/j.colsurfb.2018.12.006.

    Article  CAS  PubMed  Google Scholar 

  151. Sampathkumar SG, Yarema KJ. Dendrimers in cancer treatment and diagnosis. Kumar CSSR editor. Nanotechnologies for the life sciences. Wiley‐VCH Verlag GmbH & Co.; 2007. https://doi.org/10.1002/9783527610419.ntls0071.

  152. Dzmitruk V, Apartsin E, Ihnatsyeu-Kachan A, et al. Dendrimers show promise for siRNA and microRNA therapeutics. Pharmaceutics. 2018;10:126-150. https://doi.org/10.3390/pharmaceutics10030126.

    Article  CAS  PubMed Central  Google Scholar 

  153. Gillies E, Frechet J. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10:35–43. https://doi.org/10.1016/s1359-6446(04)03276-3.

    Article  CAS  PubMed  Google Scholar 

  154. Bosman AW, Janssen HM, Meijer EW. About dendrimers: structure, physical properties, and applications. Chem Rev. 1999;99:1665–88. https://doi.org/10.1021/cr970069y.

    Article  CAS  PubMed  Google Scholar 

  155. Tomalia DA, Baker H, Dewald J, et al. Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules. 1986;19:2466–8. https://doi.org/10.1021/ma00163a029.

    Article  CAS  Google Scholar 

  156. Kim Y, Zimmerman SC. Applications of dendrimers in bio-organic chemistry. Curr Opin Chem Biol. 1998;2:733–42. https://doi.org/10.1016/s1367-5931(98)80111-7.

    Article  CAS  PubMed  Google Scholar 

  157. Smith DK, Diederich F. Functional dendrimers: unique biological mimics. Chem Eur J. 1998;4:1353–61. https://doi.org/10.1002/(sici)1521-3765(19980807)4:8%3c1353::aid-chem1353%3e3.0.co;2-0.

    Article  CAS  Google Scholar 

  158. Stiriba S-E, Frey H, Haag R. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int. 2002;41:1329–34. https://doi.org/10.1002/1521-3773(20020415)41:8%3c1329::aid-anie1329%3e3.0.co;2-p.

    Article  CAS  Google Scholar 

  159. Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev. 2011;40:173–90. https://doi.org/10.1039/b901839p.

    Article  CAS  PubMed  Google Scholar 

  160. Wang F, Zhang B, Zhou L, et al. Imaging dendrimer-grafted graphene oxide mediated anti-miR-21 delivery with an activatable luciferase reporter. ACS Appl Mater Interfaces. 2016;8:9014–21. https://doi.org/10.1021/acsami.6b02662.

    Article  CAS  PubMed  Google Scholar 

  161. Qian X, Ren Y, Shi Z, et al. Sequence-dependent synergistic inhibition of human glioma cell lines by combined temozolomide and miR-21 inhibitor gene therapy. Mol Pharm. 2012;9:2636–45. https://doi.org/10.1021/mp3002039.

    Article  CAS  PubMed  Google Scholar 

  162. Ren Y, Kang C-S, Yuan X-B, et al. Co-delivery of as-miR-21 and 5-FU by poly (amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed. 2010;21:303–14. https://doi.org/10.1163/156856209X415828.

    Article  CAS  PubMed  Google Scholar 

  163. Abbasi E, Aval S, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9:247. https://doi.org/10.1186/1556-276x-9-247.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Wu W, Hu Q, Wang M, et al. A PEGylated megamer-based microRNA delivery system activatable by stepwise microenvironment stimulation. Chem Commun. 2019;55:9363–6. https://doi.org/10.1039/c9cc03846a.

    Article  CAS  Google Scholar 

  165. Duan Y, Xing Z, Yang J, et al. Chondroitin sulfate-functionalized polyamidoamine-mediated miR-34a delivery for inhibiting the proliferation and migration of pancreatic cancer. RSC Adv. 2016;6:70870–6. https://doi.org/10.1039/c6ra15716e.

    Article  CAS  Google Scholar 

  166. Liu X, Li G, Su Z, et al. Poly (amido amine) is an ideal carrier of miR-7 for enhancing gene silencing effects on the EGFR pathway in U251 glioma cells. Oncol Rep. 2013;29:1387–94. https://doi.org/10.3892/or.2013.2283.

    Article  CAS  PubMed  Google Scholar 

  167. Sakurai Y, Akita H, Harashima H. Targeting tumor endothelial cells with nanoparticles. Int J Mol Sci. 2019;20:5819. https://doi.org/10.3390/ijms20235819

    Article  CAS  PubMed Central  Google Scholar 

  168. Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11:59–67. https://doi.org/10.1038/nrc2966.

    Article  CAS  PubMed  Google Scholar 

  169. Yu HW, Cho WC. The emerging role of miRNAs in combined cancer therapy. Expert Opin Biol Ther. 2015;15:923–5. https://doi.org/10.1517/14712598.2015.1030390.

    Article  CAS  PubMed  Google Scholar 

  170. Thakur S, Saini RV, Singh P, Raizada P, et al. Nanoparticles as an emerging tool to alter the gene expression: preparation and conjugation methods. Mater Today Chem. 2020;17:100295. https://doi.org/10.1016/j.mtchem.2020.100295.

    Article  CAS  Google Scholar 

  171. Yang C, Gao S, Song P, et al. Theranostic niosomes for efficient siRNA/microRNA delivery and activatable near-infrared fluorescent tracking of stem cells. ACS Appl Mater Interfaces. 2018;10:19494–503. https://doi.org/10.1021/acsami.8b05513.

    Article  CAS  PubMed  Google Scholar 

  172. Liang J, Zhang X, He S, et al. Sphk2 RNAi nanoparticles suppress tumor growth via downregulating cancer cell derived exosomal microRNA. J Control Release. 2018;286:348–57. https://doi.org/10.1016/j.jconrel.2018.07.039.

    Article  CAS  PubMed  Google Scholar 

  173. Piao L, Zhang M, Datta J, et al. Lipid-based nanoparticle delivery of Pre-miR-107 inhibits the tumorigenicity of head and neck squamous cell carcinoma. Mol Ther. 2012;20:1261–9. https://doi.org/10.1038/mt.2012.67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wu Y, Crawford M, Yu B, et al. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol Pharm. 2011;8:1381–9. https://doi.org/10.1021/mp2002076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hsu S-H, Yu B, Wang X, et al. Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. Nanomedicine. 2013;9:1169–80. https://doi.org/10.1016/j.nano.2013.05.007.

    Article  CAS  PubMed  Google Scholar 

  176. Pramanik D, Campbell NR, Karikari C, et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther. 2011;10:1470–80. https://doi.org/10.1158/1535-7163.MCT-11-0152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Scheideler M, Vidakovic I, Prassl R. Lipid nanocarriers for microRNA delivery. Chem Phys Lipids. 2020;226:104837. https://doi.org/10.1016/j.chemphyslip.2019.104837.

    Article  CAS  PubMed  Google Scholar 

  178. Moro M, Di Paolo D, Milione M, et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J Control Release. 2019;308:44–56. https://doi.org/10.1016/j.jconrel.2019.07.006.

    Article  CAS  PubMed  Google Scholar 

  179. Wang Z, Zhao K, Zhang Y, et al. Anti-GPC3 Antibody tagged cationic switchable lipid-based nanoparticles for the co-delivery of anti-miRNA27a and sorafenib in liver cancers. Pharm Res. 2019;36:145. https://doi.org/10.1007/s11095-019-2669-5.

    Article  CAS  PubMed  Google Scholar 

  180. Wang X, Yu B, Ren W, et al. Enhanced hepatic delivery of siRNA and microRNA using oleic acid based lipid nanoparticle formulations. J Control Release. 2013;172:690–8. https://doi.org/10.1016/j.jconrel.2013.09.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge their respective departments for their support in writing this article.

Funding

The authors are grateful to Maharishi Markandeshwar (Deemed to be University) for providing financial support for writing this review article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, R.V.S. and A.K.S.; writing—original draft preparation, Y.S., S.K., N.K., and R.V.S.; writing—review and editing, A.K.S., N.K., V.K.T., V.K.G., and V.S.; supervision, Y.S. and R.V.S. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Adesh K. Saini or Reena V. Saini.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, Y., Saini, A.K., Kashyap, S. et al. Host miRNA and immune cell interactions: relevance in nano-therapeutics for human health. Immunol Res 70, 1–18 (2022). https://doi.org/10.1007/s12026-021-09247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-021-09247-8

Keywords

Navigation