Skip to main content

Advertisement

Log in

B-lymphocyte tolerance and effector function in immunity and autoimmunity

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

B-lymphocytes are integral to host defense against microbial pathogens and are associated with many autoimmune diseases. The B-cell receptor implements B-cell self-tolerance based on the antigen specificity, and B-cell-activating factor receptor (BAFF-R) imposes homeostatic control. While shaping the repertoire, the immune tolerance process also culls mature B cells into distinct populations. The activation response of B cells is tailored to the type of pathogen attack and is facilitated by T-cell help via CD40/CD40L interaction and/or innate cell help via toll-like receptors in conjunction with BAFF receptors and ligands. Activated effector B cells not only produce antibodies, but also produce a variety of cytokines to enhance and suppress the immune response. Not surprisingly, B cells play multiple roles in both humoral and cellular immune responses during infection and autoimmune pathogenesis. Here, we discuss how gene expression and signaling networks regulate peripheral B-cell tolerance, B-cell effector functions and emerging therapies targeting B-cell signaling in autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allman D, Pillai S. Peripheral B cell subsets. Curr Opin Immunol. 2008;20:149–57.

    Google Scholar 

  2. Hardy RR, Hayakawa K. B cell development pathways. Annu Rev Immunol. 2001;19:595–621.

    Article  CAS  PubMed  Google Scholar 

  3. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381:751–8.

    Article  CAS  PubMed  Google Scholar 

  4. Su TT, Rawlings DJ. Transitional B lymphocyte subsets operate as distinct checkpoints in murine splenic B cell development. J Immunol. 2002;168(5):2101–10.

    Article  CAS  PubMed  Google Scholar 

  5. Lund FE, Cytokine-producing B. lymphocytes-key regulators of immunity. Curr Opin Immunol. 2008;20(3):332–8. doi:10.1016/j.coi.2008.03.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Allman DM, Ferguson SE, Cancro MP. Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigen and exhibit unique signaling characteristics. J Immunol. 1992;149(8):2533–40.

    CAS  PubMed  Google Scholar 

  7. Allman DM, Ferguson SE, Lentz VM, Cancro MP. Peripheral B cell maturation. II. Heat-stable antigen(hi) splenic B cells are an immature developmental intermediate in the production of long-lived marrow-derived B cells. J Immunol. 1993;151(9):4431–44.

    CAS  PubMed  Google Scholar 

  8. Khan WN. B cell receptor and BAFF receptor signaling regulation of B cell homeostasis. J Immunol. 2009;183(6):3561–7. doi:10.4049/jimmunol.0800933.

    Article  CAS  PubMed  Google Scholar 

  9. Su TT, Guo B, Wei B, Braun J, Rawlings DJ. Signaling in transitional type 2 B cells is critical for peripheral B-cell development. Immunol Rev. 2004;197:161–78.

    Article  CAS  PubMed  Google Scholar 

  10. Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA, et al. Altered immunoglobulin expression and functional silencing of self- reactive B lymphocytes in transgenic mice. Nature. 1988;334(6184):676–82.

    Article  CAS  PubMed  Google Scholar 

  11. Hartley SB, Cooke MP, Fulcher DA, Harris AW, Cory S, Basten A, et al. Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell. 1993;72(3):325–35.

    Article  CAS  PubMed  Google Scholar 

  12. Goodnow CC, Cyster JG, Hartley SB, Bell SE, Cooke MP, Healy JI, et al. Self-tolerance checkpoints in B lymphocyte development. Adv Immunol. 1995;59:279–368.

    Article  CAS  PubMed  Google Scholar 

  13. Khan WN, Shinners NP, Castro I, Hoek KL. BAFF receptor regulation of peripheral B lymphocyte survival and development. In: Cancro MP, editor. BLyS ligands and receptors. Humana Press; 2009. p. 19–41.

  14. Meyer-Bahlburg A, Andrews SF, Yu KO, Porcelli SA, Rawlings DJ. Characterization of a late transitional B cell population highly sensitive to BAFF-mediated homeostatic proliferation. J Exp Med. 2008;205(1):155–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Pillai S, Cariappa A, Moran ST. Marginal zone B cells. Annu Rev Immunol. 2005;23:161–96.

    Article  CAS  PubMed  Google Scholar 

  16. Wahren-Herlenius M, Dorner T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet. 2013;382(9894):819–31. doi:10.1016/S0140-6736(13)60954-X.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy G, Lisnevskaia L, Isenberg D. Systemic lupus erythematosus and other autoimmune rheumatic diseases: challenges to treatment. Lancet. 2013;382(9894):809–18. doi:10.1016/S0140-6736(13)60889-2.

    Article  CAS  PubMed  Google Scholar 

  18. Tolar P, Sohn HW, Liu W, Pierce SK. The molecular assembly and organization of signaling active B-cell receptor oligomers. Immunol Rev. 2009;232(1):34–41. doi:10.1111/j.1600-065X.2009.00833.x.

    Article  CAS  PubMed  Google Scholar 

  19. Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell. 2004;117(6):787–800.

    Article  CAS  PubMed  Google Scholar 

  20. Lam KP, Rajewsky K. Rapid elimination of mature autoreactive B cells demonstrated by Cre-induced change in B cell antigen receptor specificity in vivo. Proc Natl Acad Sci USA. 1998;95(22):13171–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Reth M. Antigen receptor tail clue. Nature. 1989;338:383–4.

    Article  CAS  PubMed  Google Scholar 

  22. Reth M, Wienands J. Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol. 1997;15:453–79.

    Article  CAS  PubMed  Google Scholar 

  23. Mukherjee S, Zhu J, Zikherman J, Parameswaran R, Kadlecek TA, Wang Q, et al. Monovalent and multivalent ligation of the B cell receptor exhibit differential dependence upon Syk and Src family kinases. Sci Signal. 2013;6(256):ra1. doi:10.1126/scisignal.2003220.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, DePinho RA, et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell. 2009;139(3):573–86. doi:10.1016/j.cell.2009.08.041.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Baracho GV, Miletic AV, Omori SA, Cato MH, Rickert RC. Emergence of the PI3-kinase pathway as a central modulator of normal and aberrant B cell differentiation. Curr Opin Immunol. 2011;23(2):178–83. doi:10.1016/j.coi.2011.01.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Fruman DA. Towards an understanding of isoform specificity in phosphoinositide 3-kinase signalling in lymphocytes. Biochem Soc Trans. 2004;32(Pt 2):315–9.

    Article  CAS  PubMed  Google Scholar 

  27. Khan WN, Alt FW, Gerstein RM, Malynn BA, Larsson I, Rathbun G, et al. Defective B cell development and function in Btk-deficient mice. Immunity. 1995;3(3):283–99.

    Article  CAS  PubMed  Google Scholar 

  28. Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC, Cohen L, et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science. 1993;261(5119):358–61.

    Article  CAS  PubMed  Google Scholar 

  29. Thomas JD, Sideras P, Smith CI, Vorechovsky I, Chapman V, Paul WE. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science. 1993;261(5119):355–8.

    Article  CAS  PubMed  Google Scholar 

  30. Humphries LA, Dangelmaier C, Sommer K, Kipp K, Kato RM, Griffith N, et al. Tec kinases mediate sustained calcium influx via site-specific tyrosine phosphorylation of the phospholipase Cgamma Src homology 2-Src homology 3 linker. J Biol Chem. 2004;279(36):37651–61.

    Article  CAS  PubMed  Google Scholar 

  31. Kim YJ, Sekiya F, Poulin B, Bae YS, Rhee SG. Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2. Mol Cell Biol. 2004;24(22):9986–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Antony P, Petro JB, Carlesso G, Shinners NP, Lowe J, Khan WN. B-cell antigen receptor activates transcription factors NFAT (nuclear factor of activated T-cells) and NF-kappaB (nuclear factor kappaB) via a mechanism that involves diacylglycerol. Biochem Soc Trans. 2004;32(Pt 1):113–5. doi:10.1042/BST0320113.

    Article  CAS  PubMed  Google Scholar 

  33. Bajpai UD, Zhang K, Teutsch M, Sen R, Wortis HH. Bruton’s tyrosine kinase links the B cell receptor to nuclear factor kappaB activation. J Exp Med. 2000;191(10):1735–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Petro JB, Castro I, Lowe J, Khan WN. Bruton’s tyrosine kinase targets NF-kappaB to the bcl-x promoter via a mechanism involving phospholipase C-gamma2 following B cell antigen receptor engagement. FEBS Lett. 2002;532(1–2):57–60.

    Article  CAS  PubMed  Google Scholar 

  35. Petro JB, Khan WN. Phospholipase C-gamma 2 couples Bruton’s tyrosine kinase to the NF-kappa B signaling pathway in B lymphocytes. J Biol Chem. 2001;276(3):1715–9.

    Article  CAS  PubMed  Google Scholar 

  36. Petro JB, Rahman SM, Ballard DW, Khan WN. Bruton’s tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. J Exp Med. 2000;191(10):1745–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Su TT, Guo B, Kawakami Y, Sommer K, Chae K, Humphries LA, et al. PKC-beta controls I kappa B kinase lipid raft recruitment and activation in response to BCR signaling. Nat Immunol. 2002;3(8):780–6.

    CAS  PubMed  Google Scholar 

  38. Hara H, Wada T, Bakal C, Kozieradzki I, Suzuki S, Suzuki N, et al. The MAGUK family protein CARD11 is essential for lymphocyte activation. Immunity. 2003;18(6):763–75.

    Article  CAS  PubMed  Google Scholar 

  39. Matsumoto R, Wang D, Blonska M, Li H, Kobayashi M, Pappu B, et al. Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation. Immunity. 2005;23(6):575–85.

    Article  CAS  PubMed  Google Scholar 

  40. Ruland J, Duncan GS, Elia A, del Barco Barrantes I, Nguyen L, Plyte S, et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-kappaB and neural tube closure. Cell. 2001;104(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  41. Shinohara H, Yasuda T, Aiba Y, Sanjo H, Hamadate M, Watarai H, et al. PKC beta regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1. J Exp Med. 2005;202(10):1423–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Sommer K, Guo B, Pomerantz JL, Bandaranayake AD, Moreno-Garcia ME, Ovechkina YL, et al. Phosphorylation of the CARMA1 linker controls NF-kappaB activation. Immunity. 2005;23(6):561–74.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou H, Wertz I, O’Rourke K, Ultsch M, Seshagiri S, Eby M, et al. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature. 2004;427(6970):167–71.

    Article  CAS  PubMed  Google Scholar 

  44. Li ZW, Omori SA, Labuda T, Karin M, Rickert RC. IKK beta is required for peripheral B cell survival and proliferation. J Immunol. 2003;170(9):4630–7.

    Article  CAS  PubMed  Google Scholar 

  45. Pasparakis M, Schmidt-Supprian M, Rajewsky K. IkappaB kinase signaling is essential for maintenance of mature B cells. J Exp Med. 2002;196(6):743–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Xue L, Morris SW, Orihuela C, Tuomanen E, Cui X, Wen R, et al. Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells. Nat Immunol. 2003;4(9):857–65.

    Article  CAS  PubMed  Google Scholar 

  47. Rawlings DJ, Sommer K, Moreno-Garcia ME. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol. 2006;6(11):799–812.

    Article  CAS  PubMed  Google Scholar 

  48. Petro JB, Gerstein RM, Lowe J, Carter RS, Shinners N, Khan WN. Transitional type 1 and 2 B lymphocyte subsets are differentially responsive to antigen receptor signaling. J Biol Chem. 2002;277(50):48009–19.

    Article  CAS  PubMed  Google Scholar 

  49. Andrews SF, Dai X, Ryu BY, Gulick T, Ramachandran B, Rawlings DJ. Developmentally regulated expression of MEF2C limits the response to BCR engagement in transitional B cells. Eur J Immunol. 2012;42(5):1327–36. doi:10.1002/eji.201142226.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Andrews SF, Rawlings DJ. Transitional B cells exhibit a B cell receptor-specific nuclear defect in gene transcription. J Immunol. 2009;182(5):2868–78. doi:10.4049/jimmunol.0802368.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Coughlin JJ, Stang SL, Dower NA, Stone JC. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. J Immunol. 2005;175(11):7179–84.

    Article  CAS  PubMed  Google Scholar 

  52. Grandien A, Modigliani Y, Freitas A, Andersson J, Coutinho A. Positive and negative selection of antibody repertoires during B-cell differentiation. Immunol Rev. 1994;137:53–89.

    Article  CAS  PubMed  Google Scholar 

  53. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301(5638):1374–7.

    Article  CAS  PubMed  Google Scholar 

  54. Goodnow CC. Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires. Proc Natl Acad Sci USA. 1996;93(6):2264–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Nossal GJ, Pike BL. Clonal anergy: persistence in tolerant mice of antigen-binding B lymphocytes incapable of responding to antigen or mitogen. Proc Natl Acad Sci USA. 1980;77(3):1602–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Nemazee D, Weigert M. Revising B cell receptors. J Exp Med. 2000;191(11):1813–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Nemazee D, Buerki K. Clonal deletion of autoreactive B lymphocytes in bone marrow chimeras. Proc Natl Acad Sci USA. 1989;86(20):8039–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Loder F, Mutschler B, Ray RJ, Paige CJ, Sideras P, Torres R, et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med. 1999;190(1):75–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Nussenzweig MC, Meffre E, Young JW, Schaefer A, Yurasov S, Wardemann H. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–7.

    Article  PubMed  CAS  Google Scholar 

  60. Samuels J, Ng YS, Coupillaud C, Paget D, Meffre E. Human B cell tolerance and its failure in rheumatoid arthritis. Ann N Y Acad Sci. 2005;1062:116–26. doi:10.1196/annals.1358.014.

    Article  PubMed  Google Scholar 

  61. Samuels J, Ng YS, Coupillaud C, Paget D, Meffre E. Impaired early B cell tolerance in patients with rheumatoid arthritis. J Exp Med. 2005;201(10):1659–67. doi:10.1084/jem.20042321.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Yurasov S, Wardemann H, Hammersen J, Tsuiji M, Meffre E, Pascual V, et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med. 2005;201(5):703–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Kench JA, Russell DM, Nemazee D. Efficient peripheral clonal elimination of B lymphocytes in MRL/lpr mice bearing autoantibody transgenes. J Exp Med. 1998;188(5):909–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Russell DM, Dembic Z, Morahan G, Miller JF, Burki K, Nemazee D. Peripheral deletion of self-reactive B cells. Nature. 1991;354(6351):308–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Allman D, Lindsley RC, DeMuth W, Rudd K, Shinton SA, Hardy RR. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J Immunol. 2001;167(12):6834–40.

    Article  CAS  PubMed  Google Scholar 

  66. Hoek KL, Antony P, Lowe J, Shinners N, Sarmah B, Wente SR, et al. Transitional B cell fate is associated with developmental stage-specific regulation of diacylglycerol and calcium signaling upon B cell receptor engagement. J Immunol. 2006;177(8):5405–13.

    Article  CAS  PubMed  Google Scholar 

  67. Henderson RB, Grys K, Vehlow A, de Bettignies C, Zachacz A, Henley T, et al. A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival. J Exp Med. 2010;207(4):837–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Tussiwand R, Bosco N, Ceredig R, Rolink AG. Tolerance checkpoints in B-cell development: Johnny B good. Eur J Immunol. 2009;39(9):2317–24. doi:10.1002/eji.200939633.

    Article  CAS  PubMed  Google Scholar 

  69. Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. 2013;131(4):959–71. doi:10.1016/j.jaci.2013.01.046.

    Article  CAS  PubMed  Google Scholar 

  70. Melchers F. Anergic B cells caught in the act. Immunity. 2006;25(6):864–7. doi:10.1016/j.immuni.2006.11.003.

    Article  CAS  PubMed  Google Scholar 

  71. Browne CD, Del Nagro CJ, Cato MH, Dengler HS, Rickert RC. Suppression of phosphatidylinositol 3,4,5-trisphosphate production is a key determinant of B cell anergy. Immunity. 2009;31(5):749–60. doi:10.1016/j.immuni.2009.08.026.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Goodnow CC, Crosbie J, Jorgensen H, Brink RA, Basten A. Induction of self-tolerance in mature peripheral B lymphocytes. Nature. 1989;342(6248):385–91. doi:10.1038/342385a0.

    Article  CAS  PubMed  Google Scholar 

  73. Gauld SB, Benschop RJ, Merrell KT, Cambier JC. Maintenance of B cell anergy requires constant antigen receptor occupancy and signaling. Nat Immunol. 2005;6(11):1160–7. doi:10.1038/ni1256.

    Article  CAS  PubMed  Google Scholar 

  74. Merrell KT, Benschop RJ, Gauld SB, Aviszus K, Decote-Ricardo D, Wysocki LJ, et al. Identification of anergic B cells within a wild-type repertoire. Immunity. 2006;25(6):953–62.

    Article  CAS  PubMed  Google Scholar 

  75. Cambier JC, Gauld SB, Merrell KT, Vilen BJ. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev Immunol. 2007;7(8):633–43. doi:10.1038/nri2133.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Zikherman J, Parameswaran R, Weiss A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature. 2012;489(7414):160–4. doi:10.1038/nature11311.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Halverson R, Torres RM, Pelanda R. Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nat Immunol. 2004;5(6):645–50. doi:10.1038/ni1076.

    Article  CAS  PubMed  Google Scholar 

  78. Kiefer K, Nakajima PB, Oshinsky J, Seeholzer SH, Radic M, Bosma GC, et al. Antigen receptor editing in anti-DNA transitional B cells deficient for surface IgM. J Immunol. 2008;180(9):6094–106.

    Article  CAS  PubMed  Google Scholar 

  79. Wang H, Feng J, Qi CF, Li Z, Morse HC 3rd, Clarke SH. Transitional B cells lose their ability to receptor edit but retain their potential for positive and negative selection. J Immunol. 2007;179(11):7544–52.

    Article  CAS  PubMed  Google Scholar 

  80. Behrens TW, Rajewsky K, Schlissel MS. Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS One. 2005;3(3):463–75.

    Google Scholar 

  81. Monroe RJ, Seidl KJ, Gaertner F, Han S, Chen F, Sekiguchi J, et al. RAG2:GFP knockin mice reveal novel aspects of RAG2 expression in primary and peripheral lymphoid tissues. Immunity. 1999;11(2):201–12.

    Article  CAS  PubMed  Google Scholar 

  82. Castro I, Wright JA, Damdinsuren B, Hoek KL, Carlesso G, Shinners NP, et al. B cell receptor-mediated sustained c-Rel activation facilitates late transitional B cell survival through control of B cell activating factor receptor and NF-kappaB2. J Immunol. 2009;182(12):7729–37. doi:10.4049/jimmunol.0803281.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Cheng S, Hsia CY, Feng B, Liou ML, Fang X, Pandolfi PP, et al. BCR-mediated apoptosis associated with negative selection of immature B cells is selectively dependent on Pten. Cell Res. 2009;19(2):196–207.

    Article  CAS  PubMed  Google Scholar 

  84. Limnander A, Depeille P, Freedman TS, Liou J, Leitges M, Kurosaki T, et al. STIM1, PKC-delta and RasGRP set a threshold for proapoptotic Erk signaling during B cell development. Nat Immunol. 2011;12(5):425–33. doi:10.1038/ni.2016.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Stang SL, Lopez-Campistrous A, Song X, Dower NA, Blumberg PM, Wender PA, et al. A proapoptotic signaling pathway involving RasGRP, Erk, and Bim in B cells. Exp Hematol. 2009;37(1):122–34. doi:10.1016/j.exphem.2008.09.008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Enders A, Bouillet P, Puthalakath H, Xu Y, Tarlinton DM, Strasser A. Loss of the pro-apoptotic BH3-only Bcl-2 family member Bim inhibits BCR stimulation-induced apoptosis and deletion of autoreactive B cells. J Exp Med. 2003;198(7):1119–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Allman D, Pillai S. Peripheral B cell subsets. Curr Opin Immunol. 2008;20(2):149–57. doi:10.1016/j.coi.2008.03.014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Wang H, Clarke SH. Evidence for a ligand-mediated positive selection signal in differentiation to a mature B cell. J Immunol. 2003;171(12):6381–8.

    Article  CAS  PubMed  Google Scholar 

  89. Batten M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J, et al. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med. 2000;192(10):1453–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Brink R. Regulation of B cell self-tolerance by BAFF. Semin Immunol. 2006;18(5):276–83.

    Article  CAS  PubMed  Google Scholar 

  91. Huang X, Di Liberto M, Cunningham AF, Kang L, Cheng S, Ely S, et al. Homeostatic cell-cycle control by BLyS: induction of cell-cycle entry but not G1/S transition in opposition to p18INK4c and p27Kip1. Proc Natl Acad Sci USA. 2004;101(51):17789–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293(5537):2111–4.

    Article  CAS  PubMed  Google Scholar 

  93. Schweighoffer E, Vanes L, Nys J, Cantrell D, McCleary S, Smithers N, et al. The BAFF receptor transduces survival signals by co-opting the B cell receptor signaling pathway. Immunity. 2013;38(3):475–88. doi:10.1016/j.immuni.2012.11.015.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Mihalcik SA, Huddleston PM 3rd, Wu X, Jelinek DF. The structure of the TNFRSF13C promoter enables differential expression of BAFF-R during B cell ontogeny and terminal differentiation. J Immunol. 2010;185(2):1045–54. doi:10.4049/jimmunol.1001120.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE. Identification and characterization of circulating human transitional B cells. Blood. 2005;105(11):4390–8. doi:10.1182/blood-2004-11-4284.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Groom JR, Fletcher CA, Walters SN, Grey ST, Watt SV, Sweet MJ, et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J Exp Med. 2007;204(8):1959–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J Clin Invest. 2002;109(1):59–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Carter LM, Isenberg DA, Ehrenstein MR. Elevated serum B-cell activating factor (BAFF/BLyS) is associated with rising anti-dsDNA antibody levels and flare following B-cell depletion therapy in systemic lupus erythematosus. Arthritis Rheum. 2013;. doi:10.1002/art.38074.

    PubMed  Google Scholar 

  99. Shinners NP, Carlesso G, Castro I, Hoek KL, Corn RA, Woodland RT, et al. Bruton’s tyrosine kinase mediates NF-kappa B activation and B cell survival by B cell-activating factor receptor of the TNF-R family. J Immunol. 2007;179(6):3872–80.

    Article  CAS  PubMed  Google Scholar 

  100. Mecklenbrauker I, Saijo K, Zheng NY, Leitges M, Tarakhovsky A. Protein kinase Cdelta controls self-antigen-induced B-cell tolerance. Nature. 2002;416(6883):860–5.

    Article  PubMed  CAS  Google Scholar 

  101. Patke A, Mecklenbrauker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKC{beta}- and Akt-dependent mechanism. J Exp Med. 2006;203:2551–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Patke A, Mecklenbrauker I, Tarakhovsky A. Survival signaling in resting B cells. Curr Opin Immunol. 2004;16(2):251–5.

    Article  CAS  PubMed  Google Scholar 

  103. Song J, Lokmic Z, Lammermann T, Rolf J, Wu C, Zhang X, et al. Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival. Proc Natl Acad Sci USA. 2013;110(31):E2915–24. doi:10.1073/pnas.1218131110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol. 2010;10(4):236–47. doi:10.1038/nri2729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Wang H, Feng J, Qi C, Morse HC 3rd. An ENU-induced mutation in the lymphotoxin alpha gene impairs organogenesis of lymphoid tissues in C57BL/6 mice. Biochem Biophys Res Commun. 2008;370(3):461–7. doi:10.1016/j.bbrc.2008.03.118.

    Article  CAS  PubMed  Google Scholar 

  106. Ettinger R, Browning JL, Michie SA, van Ewijk W, McDevitt HO. Disrupted splenic architecture, but normal lymph node development in mice expressing a soluble lymphotoxin-beta receptor-IgG1 fusion protein. Proc Natl Acad Sci USA. 1996;93(23):13102–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM, et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol. 2001;167(2):1072–80.

    Article  CAS  PubMed  Google Scholar 

  108. Motallebzadeh R, Rehakova S, Conlon TM, Win TS, Callaghan CJ, Goddard M, et al. Blocking lymphotoxin signaling abrogates the development of ectopic lymphoid tissue within cardiac allografts and inhibits effector antibody responses. FASEB J. 2012;26(1):51–62. doi:10.1096/fj.11-186973.

    Article  CAS  PubMed  Google Scholar 

  109. Mandik-Nayak L, Huang G, Sheehan KC, Erikson J, Chaplin DD. Signaling through TNF receptor p55 in TNF-alpha-deficient mice alters the CXCL13/CCL19/CCL21 ratio in the spleen and induces maturation and migration of anergic B cells into the B cell follicle. J Immunol. 2001;167(4):1920–8.

    Article  CAS  PubMed  Google Scholar 

  110. Ngo VN, Korner H, Gunn MD, Schmidt KN, Riminton DS, Cooper MD, et al. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med. 1999;189(2):403–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Ettinger R, Mebius R, Browning JL, Michie SA, van Tuijl S, Kraal G, et al. Effects of tumor necrosis factor and lymphotoxin on peripheral lymphoid tissue development. Int Immunol. 1998;10(6):727–41.

    Article  CAS  PubMed  Google Scholar 

  112. Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM, et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol. 2000;1(6):475–82. doi:10.1038/82717.

    Article  CAS  PubMed  Google Scholar 

  113. Shirota H, Sano K, Hirasawa N, Terui T, Ohuchi K, Hattori T, et al. B cells capturing antigen conjugated with CpG oligodeoxynucleotides induce Th1 cells by elaborating IL-12. J Immunol. 2002;169(2):787–94.

    Article  CAS  PubMed  Google Scholar 

  114. Cariappa A, Boboila C, Moran ST, Liu H, Shi HN, Pillai S. The recirculating B cell pool contains two functionally distinct, long-lived, posttransitional, follicular B cell populations. J Immunol. 2007;179(4):2270–81.

    Article  CAS  PubMed  Google Scholar 

  115. Mizoguchi A, Bhan AK. A case for regulatory B cells. J Immunol. 2006;176(2):705–10.

    Article  CAS  PubMed  Google Scholar 

  116. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood. 2011;117(2):530–41. doi:10.1182/blood-2010-07-294249.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 2013;13(2):118–32. doi:10.1038/nri3383.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Martin F, Kearney JF. Marginal-zone B cells. Nat Rev Immunol. 2002;2(5):323–35.

    Article  CAS  PubMed  Google Scholar 

  119. Treml LS, Carlesso G, Hoek KL, Stadanlick JE, Kambayashi T, Bram RJ, et al. TLR stimulation modifies BLyS receptor expression in follicular and marginal zone B cells. J Immunol. 2007;178(12):7531–9.

    Article  CAS  PubMed  Google Scholar 

  120. Bendelac A, Bonneville M, Kearney JF. Autoreactivity by design: innate B and T lymphocytes. Nat Rev Immunol. 2001;1(3):177–86. doi:10.1038/35105052.

    Article  CAS  PubMed  Google Scholar 

  121. Kendall PL, Case JB, Sullivan AM, Holderness JS, Wells KS, Liu E, et al. Tolerant anti-insulin B cells are effective APCs. J Immunol. 2013;190(6):2519–26. doi:10.4049/jimmunol.1202104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Kendall PL, Yu G, Woodward EJ, Thomas JW. Tertiary lymphoid structures in the pancreas promote selection of B lymphocytes in autoimmune diabetes. J Immunol. 2007;178(9):5643–51.

    Article  CAS  PubMed  Google Scholar 

  123. Wellmann U, Werner A, Winkler TH. Altered selection processes of B lymphocytes in autoimmune NZB/W mice, despite intact central tolerance against DNA. Eur J Immunol. 2001;31(9):2800–10. doi:10.1002/1521-4141(200109)31:9<2800:AID-IMMU2800>3.0.CO;2-E.

    Article  CAS  PubMed  Google Scholar 

  124. Gururajan M, Jacob J, Pulendran B. Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS One. 2007;2(9):e863. doi:10.1371/journal.pone.0000863.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Balazs M, Martin F, Zhou T, Kearney J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity. 2002;17(3):341–52.

    Article  CAS  PubMed  Google Scholar 

  126. Kenny EF, Quinn SR, Doyle SL, Vink PM, van Eenennaam H, O’Neill LA. Bruton’s tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin. PLoS One. 2013;8(8):e74103. doi:10.1371/journal.pone.0074103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Dement-Brown J, Newton CS, Ise T, Damdinsuren B, Nagata S, Tolnay M. Fc receptor-like 5 promotes B cell proliferation and drives the development of cells displaying switched isotypes. J Leukoc Biol. 2012;91(1):59–67. doi:10.1189/jlb.0211096.

    Article  CAS  PubMed  Google Scholar 

  128. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216. doi:10.1146/annurev.immunol.20.083001.084359.

    Article  CAS  PubMed  Google Scholar 

  129. Arnon TI, Horton RM, Grigorova IL, Cyster JG. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature. 2013;493(7434):684–8. doi:10.1038/nature11738.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. You Y, Myers RC, Freeberg L, Foote J, Kearney JF, Justement LB, et al. Marginal zone B cells regulate antigen capture by marginal zone macrophages. J Immunol. 2011;186(4):2172–81. doi:10.4049/jimmunol.1002106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. McCormack R, de Armas LR, Shiratsuchi M, Ramos JE, Podack ER. Inhibition of intracellular bacterial replication in fibroblasts is dependent on the perforin-like protein (perforin-2) encoded by macrophage-expressed gene 1. J Innate Immun. 2013;5(2):185–94. doi:10.1159/000345249.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Khan WN, Nilsson A, Mizoguchi E, Castigli E, Forsell J, Bhan AK, et al. Impaired B cell maturation in mice lacking Bruton’s tyrosine kinase (Btk) and CD40. Int Immunol. 1997;9(3):395–405.

    Article  CAS  PubMed  Google Scholar 

  133. Cerutti A, Puga I, Cols M. Innate control of B cell responses. Trends Immunol. 2011;32(5):202–11. doi:10.1016/j.it.2011.02.004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Mizuno T, Rothstein TL. Cutting edge: CD40 engagement eliminates the need for Bruton’s tyrosine kinase in B cell receptor signaling for NF-kappa B. J Immunol. 2003;170(6):2806–10.

    Article  CAS  PubMed  Google Scholar 

  135. Nonoyama S, Tsukada S, Yamadori T, Miyawaki T, Jin YZ, Watanabe C, et al. Functional analysis of peripheral blood B cells in patients with X-linked agammaglobulinemia. J Immunol. 1998;161(8):3925–9.

    CAS  PubMed  Google Scholar 

  136. Touma M, Keskin DB, Shiroki F, Saito I, Koyasu S, Reinherz EL, et al. Impaired B cell development and function in the absence of IkappaBNS. J Immunol. 2011;187(8):3942–52. doi:10.4049/jimmunol.1002109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 107(29):13075–80. doi:10.1073/pnas.1004594107.

  138. Nijnik A, Ferry H, Lewis G, Rapsomaniki E, Leung JC, Daser A, et al. Spontaneous B cell hyperactivity in autoimmune-prone MRL mice. Int Immunol. 2006;18(7):1127–37. doi:10.1093/intimm/dxl047.

    Article  CAS  PubMed  Google Scholar 

  139. Wu T, Qin X, Kurepa Z, Kumar KR, Liu K, Kanta H, et al. Shared signaling networks active in B cells isolated from genetically distinct mouse models of lupus. J Clin Invest. 2007;117(8):2186–96. doi:10.1172/JCI30398.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Grimaldi CM, Hicks R, Diamond B. B cell selection and susceptibility to autoimmunity. J Immunol. 2005;174(4):1775–81.

    Article  CAS  PubMed  Google Scholar 

  141. Bohnhorst JO, Bjorgan MB, Thoen JE, Jonsson R, Natvig JB, Thompson KM. Abnormal B cell differentiation in primary Sjogren’s syndrome results in a depressed percentage of circulating memory B cells and elevated levels of soluble CD27 that correlate with Serum IgG concentration. Clin Immunol. 2002;103(1):79–88. doi:10.1006/clim 2002.5199.

    Article  CAS  PubMed  Google Scholar 

  142. Youinou P, Devauchelle-Pensec V, Pers JO. Significance of B cells and B cell clonality in Sjogren’s syndrome. Arthritis Rheum. 2010;62(9):2605–10. doi:10.1002/art.27564.

    Article  CAS  PubMed  Google Scholar 

  143. Carnrot C, Prokopec KE, Rasbo K, Karlsson MC, Kleinau S. Marginal zone B cells are naturally reactive to collagen type II and are involved in the initiation of the immune response in collagen-induced arthritis. Cell Mol Immunol. 2011;8(4):296–304. doi:10.1038/cmi.2011.2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Grammer AC, Slota R, Fischer R, Gur H, Girschick H, Yarboro C, et al. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154–CD40 interactions. J Clin Invest. 2003;112(10):1506–20. doi:10.1172/JCI19301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Takemura S, Klimiuk PA, Braun A, Goronzy JJ, Weyand CM. T cell activation in rheumatoid synovium is B cell dependent. J Immunol. 2001;167(8):4710–8.

    Article  CAS  PubMed  Google Scholar 

  146. Kendall PL, Moore DJ, Hulbert C, Hoek KL, Khan WN, Thomas JW. Reduced diabetes in btk-deficient nonobese diabetic mice and restoration of diabetes with provision of an anti-insulin IgH chain transgene. J Immunol. 2009;183(10):6403–12. doi:10.4049/jimmunol.0900367.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Rolf J, Motta V, Duarte N, Lundholm M, Berntman E, Bergman ML, et al. The enlarged population of marginal zone/CD1d(high) B lymphocytes in nonobese diabetic mice maps to diabetes susceptibility region Idd11. J Immunol. 2005;174(8):4821–7.

    Article  CAS  PubMed  Google Scholar 

  148. Marino E, Batten M, Groom J, Walters S, Liuwantara D, Mackay F, et al. Marginal-zone B-cells of nonobese diabetic mice expand with diabetes onset, invade the pancreatic lymph nodes, and present autoantigen to diabetogenic T-cells. Diabetes. 2008;57(2):395–404. doi:10.2337/db07-0589.

    Article  CAS  PubMed  Google Scholar 

  149. Aranburu A, Ceccarelli S, Giorda E, Lasorella R, Ballatore G, Carsetti R. TLR ligation triggers somatic hypermutation in transitional B cells inducing the generation of IgM memory B cells. J Immunol. 2010;185(12):7293–301. doi:10.4049/jimmunol.1002722.

    Article  CAS  PubMed  Google Scholar 

  150. Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol. 2006;6(11):823–35. doi:10.1038/nri1957.

    Article  CAS  PubMed  Google Scholar 

  151. Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity. 2010;32(3):305–15. doi:10.1016/j.immuni.2010.03.012.

    Article  CAS  PubMed  Google Scholar 

  152. Theofilopoulos AN. TLRs and IFNs: critical pieces of the autoimmunity puzzle. J Clin Invest. 2012;122(10):3464–6. doi:10.1172/JCI63835.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Liu Z, Davidson A. IFNalpha inducible models of murine SLE. Front Immunol. 2013;4:306. doi:10.3389/fimmu.2013.00306.

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Teichmann LL, Schenten D, Medzhitov R, Kashgarian M, Shlomchik MJ. Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus. Immunity. 2013;38(3):528–40. doi:10.1016/j.immuni.2012.11.017.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Avalos AM, Busconi L, Marshak-Rothstein A. Regulation of autoreactive B cell responses to endogenous TLR ligands. Autoimmunity. 2010;43(1):76–83. doi:10.3109/08916930903374618.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Daikh DI, Gillis J, Wofsy D. Inhibition of T cell costimulation: an emerging therapeutic strategy for autoimmune rheumatic diseases. Arthritis Rheum. 2006;55(2):322–4. doi:10.1002/art.21843.

    Article  CAS  PubMed  Google Scholar 

  157. Peng SL, Craft J. T cells in murine lupus: propagation and regulation of disease. Mol Biol Rep. 1996;23(3–4):247–51.

    Article  CAS  PubMed  Google Scholar 

  158. Peng SL, Craft J. The regulation of murine lupus. Ann N Y Acad Sci. 1997;815:128–38.

    Article  CAS  PubMed  Google Scholar 

  159. Peng SL, Madaio MP, Hayday AC, Craft J. Propagation and regulation of systemic autoimmunity by gammadelta T cells. J Immunol. 1996;157(12):5689–98.

    CAS  PubMed  Google Scholar 

  160. Shlomchik MJ, Craft JE, Mamula MJ. From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol. 2001;1(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  161. Gorelik L, Cutler AH, Thill G, Miklasz SD, Shea DE, Ambrose C, et al. Cutting edge: BAFF regulates CD21/35 and CD23 expression independent of its B cell survival function. J Immunol. 2004;172(2):762–6.

    Article  CAS  PubMed  Google Scholar 

  162. Ng LG, Sutherland AP, Newton R, Qian F, Cachero TG, Scott ML, et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J Immunol. 2004;173(2):807–17.

    Article  CAS  PubMed  Google Scholar 

  163. Rowland SL, Leahy KF, Halverson R, Torres RM, Pelanda R. BAFF receptor signaling aids the differentiation of immature B cells into transitional B cells following tonic BCR signaling. J Immunol. 2010;185(8):4570–81. doi:10.4049/jimmunol.1001708.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol. 2004;173(4):2245–52.

    Article  CAS  PubMed  Google Scholar 

  165. Shulga-Morskaya S, Dobles M, Walsh ME, Ng LG, MacKay F, Rao SP, et al. B cell-activating factor belonging to the TNF family acts through separate receptors to support B cell survival and T cell-independent antibody formation. J Immunol. 2004;173(4):2331–41.

    Article  CAS  PubMed  Google Scholar 

  166. Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H, et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature. 2002;415(6874):922–6.

    Article  CAS  PubMed  Google Scholar 

  167. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science. 1999;286(5445):1735–8.

    Article  CAS  PubMed  Google Scholar 

  168. Davey GM, Kurts C, Miller JF, Bouillet P, Strasser A, Brooks AG, et al. Peripheral deletion of autoreactive CD8 T cells by cross presentation of self-antigen occurs by a Bcl-2-inhibitable pathway mediated by Bim. J Exp Med. 2002;196(7):947–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Chen M, Huang L, Wang J. Deficiency of Bim in dendritic cells contributes to overactivation of lymphocytes and autoimmunity. Blood. 2007;109(10):4360–7. doi:10.1182/blood-2006-11-056424.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  170. Craxton A, Draves KE, Gruppi A, Clark EA. BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway. J Exp Med. 2005;202(10):1363–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Khan WN. Regulation of B lymphocyte development and activation by Bruton’s tyrosine kinase. Immunol Res. 2001;23(2–3):147–56.

    Article  CAS  PubMed  Google Scholar 

  172. Meffre E. The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann N Y Acad Sci. 2011;1246:1–10. doi:10.1111/j.1749-6632.2011.06347.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Kendall PL, Woodward EJ, Hulbert C, Thomas JW. Peritoneal B cells govern the outcome of diabetes in non-obese diabetic mice. Eur J Immunol. 2004;34(9):2387–95.

    Article  CAS  PubMed  Google Scholar 

  174. Schram BR, Tze LE, Ramsey LB, Liu J, Najera L, Vegoe AL, et al. B cell receptor basal signaling regulates antigen-induced Ig light chain rearrangements. J Immunol. 2008;180(7):4728–41.

    Article  CAS  PubMed  Google Scholar 

  175. Sharma S, Orlowski G, Song W. Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. J Immunol. 2009;182(1):329–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Abdrakhmanov I, Lodygin D, Geroth P, Arakawa H, Law A, Plachy J, et al. A large database of chicken bursal ESTs as a resource for the analysis of vertebrate gene function. Genome Res. 2000;10(12):2062–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Ait-Azzouzene D, Verkoczy L, Duong B, Skog P, Gavin AL, Nemazee D. Split tolerance in peripheral B cell subsets in mice expressing a low level of Igkappa-reactive ligand. J Immunol. 2006;176(2):939–48.

    Article  CAS  PubMed  Google Scholar 

  178. Thien M, Phan TG, Gardam S, Amesbury M, Basten A, Mackay F, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity. 2004;20(6):785–98.

    Article  CAS  PubMed  Google Scholar 

  179. Jansson L, Holmdahl R. Genes on the X chromosome affect development of collagen-induced arthritis in mice. Clin Exp Immunol. 1993;94(3):459–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  180. Seldin MF, Reeves JP, Scribner CL, Roths JB, Davidson WF, Morse HC 3rd, et al. Effect of xid on autoimmune C3H-gld/gld mice. Cell Immunol. 1987;107(1):249–55.

    Article  CAS  PubMed  Google Scholar 

  181. Steinberg EB, Santoro TJ, Chused TM, Smathers PA, Steinberg AD. Studies of congenic MRL-Ipr/Ipr.xid mice. J Immunol. 1983;131(6):2789–95.

    CAS  PubMed  Google Scholar 

  182. van den Akker E, van Dijk TB, Schmidt U, Felida L, Beug H, Lowenberg B, et al. The Btk inhibitor LFM-A13 is a potent inhibitor of Jak2 kinase activity. Biol Chem. 2004;385(5):409–13. doi:10.1515/BC.2004.045.

    Article  PubMed  Google Scholar 

  183. Burger JA, Buggy JJ. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765). Leuk Lymphoma. 2013;54(11):2385–91. doi:10.3109/10428194.2013.777837.

    Article  CAS  PubMed  Google Scholar 

  184. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107(29):13075–80. doi:10.1073/pnas.1004594107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Robak T, Robak E. Tyrosine kinase inhibitors as potential drugs for B-cell lymphoid malignancies and autoimmune disorders. Expert Opin Investig Drugs. 2012;21(7):921–47. doi:10.1517/13543784.2012.685650.

    Article  CAS  PubMed  Google Scholar 

  186. Gray P, Dunne A, Brikos C, Jefferies CA, Doyle SL, O’Neill LA. MyD88 adapter-like (Mal) is phosphorylated by Bruton’s tyrosine kinase during TLR2 and TLR4 signal transduction. J Biol Chem. 2006;281(15):10489–95.

    Article  CAS  PubMed  Google Scholar 

  187. Jefferies CA, O’Neill LA. Bruton’s tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? Immunol Lett. 2004;92(1–2):15–22.

    Article  CAS  PubMed  Google Scholar 

  188. Maas A, Hendriks RW. Role of Bruton’s tyrosine kinase in B cell development. Dev Immunol. 2001;8(3–4):171–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Tsukada S, Rawlings DJ, Witte ON. Role of Bruton’s tyrosine kinase in immunodeficiency. Curr Opin Immunol. 1994;6:623–30.

    Article  CAS  PubMed  Google Scholar 

  190. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72:279–90.

    Article  CAS  PubMed  Google Scholar 

  191. Vetrie D, Vorchovsky I, Sideras P, Holland J, Davies A, Flinter F, et al. The gene involved in X-linked agammaglobulinemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361:226–33.

    Article  CAS  PubMed  Google Scholar 

  192. Ochs HD, Smith CI. X-linked agammaglobulinemia. A clinical and molecular analysis. Medicine (Baltimore). 1996;75(6):287–99.

    Article  CAS  Google Scholar 

  193. Sideras P, Smith CI. Molecular and cellular aspects of X-linked agammaglobulinemia. Adv Immunol. 1995;59:135–223.

    Article  CAS  PubMed  Google Scholar 

  194. Ng YS, Wardemann H, Chelnis J, Cunningham-Rundles C, Meffre E. Bruton’s tyrosine kinase is essential for human B cell tolerance. J Exp Med. 2004;200(7):927–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  195. Broome CV, Breiman RF. Pneumococcal vaccine—past, present, and future. N Engl J Med. 1991;325(21):1506–8.

    Article  CAS  PubMed  Google Scholar 

  196. Conley ME, Cooper MD. Genetic basis of abnormal B cell development. Curr Opin Immunol. 1998;10(4):399–406.

    Article  CAS  PubMed  Google Scholar 

  197. Mond JJ, Lees A, Snapper CM. T cell-independent antigens type 2. Annu Rev Immunol. 1995;13:655–92.

    Article  CAS  PubMed  Google Scholar 

  198. Rawlings DJ. Bruton’s tyrosine kinase controls a sustained calcium signal essential for B lineage development and function [In Process Citation]. Clin Immunol. 1999;91(3):243–53.

    Article  CAS  PubMed  Google Scholar 

  199. Amsbaugh DF, Hansen CT, Prescot B, Stashak PW, Barthold DR, Parker PJ. Genetic control of the antibody response to type III pneumonococcal polysaccharides in mice. I. Evidence that an X-linked gene plays a decisive role in determining responsiveness. J Exp Med. 1972;136:931–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Brunner C, Muller B, Wirth T. Bruton’s tyrosine kinase is involved in innate and adaptive immunity. Histol Histopathol. 2005;20(3):945–55.

    CAS  PubMed  Google Scholar 

  201. Smith CI, Baskin B, Humire-Greiff P, Zhou JN, Olsson PG, Maniar HS, et al. Expression of Bruton’s agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells. J Immunol. 1994;152(2):557–65.

    CAS  PubMed  Google Scholar 

  202. Bao Y, Zheng J, Han C, Jin J, Han H, Liu Y, et al. Tyrosine kinase Btk is required for NK cell activation. J Biol Chem. 2012;287(28):23769–78. doi:10.1074/jbc.M112.372425.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  203. Mukhopadhyay S, Sahoo PK, George A, Bal V, Rath S, Ravindran B. Delayed clearance of filarial infection and enhanced Th1 immunity due to modulation of macrophage APC functions in xid mice. J Immunol. 1999;163(2):875–83.

    CAS  PubMed  Google Scholar 

  204. Mukhopadhyay S, George A, Bal V, Ravindran B, Rath S. Bruton’s tyrosine kinase deficiency in macrophages inhibits nitric oxide generation leading to enhancement of IL-12 induction. J Immunol. 1999;163(4):1786–92.

    CAS  PubMed  Google Scholar 

  205. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 463(7277):88–92. doi:10.1038/nature08638.

  206. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96. doi:10.1182/blood-2011-01-328484.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  207. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182–9. doi:10.1182/blood-2011-10-386417.

    Article  CAS  PubMed  Google Scholar 

  208. Chang BY, Huang MM, Francesco M, Chen J, Sokolove J, Magadala P, et al. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther. 2011;13(4):R115. doi:10.1186/ar3400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  209. Doyle SL, Jefferies CA, O’Neill LA. Bruton’s tyrosine kinase is involved in p65-mediated transactivation and phosphorylation of p65 on serine 536 during NFkappaB activation by lipopolysaccharide. J Biol Chem. 2005;280(25):23496–501.

    Article  CAS  PubMed  Google Scholar 

  210. Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C, et al. Bruton’s tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem. 2003;278(28):26258–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

W.N.K and E.K. were supported in part by the National Institute of Allergy and Infectious Diseases (R21AI088511), University of Miami Department of Microbiology and Immunology start-up funds and Scientific Awards Committee Pilot Study funds. E.S.C. was supported in part by National Institute of Mental Health Grant 2R32 MH018917-21 for Biopsychosocial Research Training in Immunology and AIDS (to Neil Schneiderman, Department of Psychology, University of Miami, Miami, FL). J.A.W received the Medical Faculty Association travel award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasif N. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, W.N., Wright, J.A., Kleiman, E. et al. B-lymphocyte tolerance and effector function in immunity and autoimmunity. Immunol Res 57, 335–353 (2013). https://doi.org/10.1007/s12026-013-8466-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8466-z

Keywords

Navigation