Skip to main content

Advertisement

Log in

Transdisciplinary approach to restore pancreatic islet function

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The focus of our research is on islet immunobiology. We are exploring novel strategies that could be of assistance in the treatment and prevention of type 1 diabetes, as well as in the restoration of metabolic control via transplantation of insulin producing cells (i.e., islet cells). The multiple facets of diabetes and β-cell replacement encompass different complementary disciplines, such as immunology, cell biology, pharmacology, and bioengineering, among others. Through their interaction and integration, a transdisciplinary dimension is needed in order to address and overcome all aspects of the complex puzzle toward a successful clinical translation of a biological cure for diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Diabetes Statistics fact sheet: general information and national estimates on diabetes in the United States, 2005. [database on the Internet]. U.S. Department of Health and Human Services, National Institute of Health. 2005. Available from: http://diabetes.niddk.nih.gov/dm/pubs/statistics/index.htm. Accessed.

  2. LeRoith D, Taylor SI, Olefsky JM. Diabetes mellitus: a fundamental and clinical text. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2003.

    Google Scholar 

  3. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464(7293):1293–300.

    Article  CAS  PubMed  Google Scholar 

  4. Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet. 2001;358(9277):221–9. doi:10.1016/s0140-6736(01)05415-0.

    Article  CAS  PubMed  Google Scholar 

  5. Skyler JS, Ricordi C. Stopping type 1 diabetes: attempts to prevent or cure type 1 diabetes in man. Diabetes. 2011;60(1):1–8. doi:10.2337/db10-1114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pileggi A, Alejandro R, Ricordi C. Clinical islet transplantation. Minerva Endocrinol. 2006;31(3):219–32.

    CAS  PubMed  Google Scholar 

  7. Mineo D, Pileggi A, Alejandro R, Ricordi C. Point: steady progress and current challenges in clinical islet transplantation. Diabetes Care. 2009;32(8):1563–9. doi:10.2337/dc09-0490.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Piemonti L, Pileggi A. 25 years of the Ricordi automated method for islet isolation. CellR4. 2013;1(1):8–22.

    Google Scholar 

  9. Pileggi A, Cobianchi L, Inverardi L, Ricordi C. Overcoming the challenges now limiting islet transplantation: a sequential, integrated approach. Ann N Y Acad Sci. 2006;1079:383–98.

    Article  PubMed  Google Scholar 

  10. Vendrame F, Pileggi A, Laughlin E, Allende G, Martin-Pagola A, Molano RD et al. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes. 2010;59(4):947–57. doi:10.2337/db09-0498.

    Google Scholar 

  11. Digon BJ 3rd, Rother KI, Hirshberg B, Harlan DM. Sirolimus-induced interstitial pneumonitis in an islet transplant recipient. Diabetes Care. 2003;26(11):3191.

    Article  PubMed  Google Scholar 

  12. Hirshberg B, Rother KI, Digon BJ 3rd, Lee J, Gaglia JL, Hines K, et al. Benefits and risks of solitary islet transplantation for type 1 diabetes using steroid-sparing immunosuppression: the National Institutes of Health experience. Diabetes Care. 2003;26(12):3288–95.

    Article  PubMed  Google Scholar 

  13. Cure P, Pileggi A, Froud T, Norris PM, Baidal DA, Cornejo A, et al. Alterations of the female reproductive system in recipients of islet grafts. Transplantation. 2004;78(11):1576–81.

    Article  PubMed  Google Scholar 

  14. Hafiz MM, Faradji RN, Froud T, Pileggi A, Baidal DA, Cure P, et al. Immunosuppression and procedure-related complications in 26 patients with type 1 diabetes mellitus receiving allogeneic islet cell transplantation. Transplantation. 2005;80(12):1718–28.

    Article  CAS  PubMed  Google Scholar 

  15. Molinari M, Al-Saif F, Ryan EA, Lakey JR, Senior PA, Paty BW, et al. Sirolimus-induced ulceration of the small bowel in islet transplant recipients: report of two cases. Am J Transplant. 2005;5(11):2799–804.

    Article  PubMed  Google Scholar 

  16. Desai NM, Goss JA, Deng S, Wolf BA, Markmann E, Palanjian M, et al. Elevated portal vein drug levels of sirolimus and tacrolimus in islet transplant recipients: local immunosuppression or islet toxicity? Transplantation. 2003;76(11):1623–5.

    Article  CAS  PubMed  Google Scholar 

  17. Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318–30.

    Article  CAS  PubMed  Google Scholar 

  18. Bussiere CT, Lakey JR, Shapiro AM, Korbutt GS. The impact of the mTOR inhibitor sirolimus on the proliferation and function of pancreatic islets and ductal cells. Diabetologia. 2006;49(10):2341–9.

    Article  CAS  PubMed  Google Scholar 

  19. Zahr E, Molano RD, Pileggi A, Ichii H, Jose SS, Bocca N, et al. Rapamycin impairs in vivo proliferation of islet beta-cells. Transplantation. 2007;84(12):1576–83.

    Article  CAS  PubMed  Google Scholar 

  20. Fotino C, Ricordi C, Lauriola V, Alejandro R, Pileggi A. Bone marrow-derived stem cell transplantation for the treatment of insulin-dependent diabetes. Rev Diabet Stud. 2010;7(2):144–57. doi:10.1900/RDS.2010.7.144.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Thom SR. Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol. 2009;106(3):988–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Vlodavsky E, Palzur E, Soustiel JF. Hyperbaric oxygen therapy reduces neuroinflammation and expression of matrix metalloproteinase-9 in the rat model of traumatic brain injury. Neuropathol Appl Neurobiol. 2006;32(1):40–50.

    Article  CAS  PubMed  Google Scholar 

  23. Wilson HD, Toepfer VE, Senapati AK, Wilson JR, Fuchs PN. Hyperbaric oxygen treatment is comparable to acetylsalicylic acid treatment in an animal model of arthritis. J Pain. 2007;8(12):924–30.

    Article  CAS  PubMed  Google Scholar 

  24. Wilson HD, Wilson JR, Fuchs PN. Hyperbaric oxygen treatment decreases inflammation and mechanical hypersensitivity in an animal model of inflammatory pain. Brain Res. 2006;1098(1):126–8.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q, Chang Q, Cox RA, Gong X, Gould LJ. Hyperbaric oxygen attenuates apoptosis and decreases inflammation in an ischemic wound model. J Invest Dermatol. 2008;128(8):2102–12.

    CAS  PubMed  Google Scholar 

  26. Gallagher KA, Goldstein LJ, Thom SR, Velazquez OC. Hyperbaric oxygen and bone marrow-derived endothelial progenitor cells in diabetic wound healing. Vascular. 2006;14(6):328–37.

    Article  PubMed  Google Scholar 

  27. Goldstein LJ, Gallagher KA, Bauer SM, Bauer RJ, Baireddy V, Liu ZJ, et al. Endothelial progenitor cell release into circulation is triggered by hyperoxia-induced increases in bone marrow nitric oxide. Stem Cells (Dayton, Ohio). 2006;24(10):2309–18.

    Article  CAS  Google Scholar 

  28. Liu ZJ, Velazquez OC. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal. 2008;10(11):1869–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Milovanova TN, Bhopale VM, Sorokina EM, Moore JS, Hunt TK, Hauer-Jensen M, et al. Hyperbaric oxygen stimulates vasculogenic stem cell growth and differentiation in vivo. J Appl Physiol. 2009;106(2):711–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Estrada EJ, Valacchi F, Nicora E, Brieva S, Esteve C, Echevarria L, et al. Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus. Cell Transpl. 2008;17(12):1295–304.

    Article  Google Scholar 

  31. Chen SY, Chen YC, Wang JK, Hsu HP, Ho PS, Chen YC, et al. Early hyperbaric oxygen therapy attenuates disease severity in lupus-prone autoimmune (NZB × NZW) F1 mice. Clin Immunol. 2003;108(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  32. Sakata N, Chan NK, Ostrowski RP, Chrisler J, Hayes P, Kim S, et al. Hyperbaric oxygen therapy improves early posttransplant islet function. Pediatr Diabetes. 2010;11(7):471–8. doi:10.1111/j.1399-5448.2009.00629.x.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Juang JH, Hsu BR, Kuo CH, Uengt SW. Beneficial effects of hyperbaric oxygen therapy on islet transplantation. Cell Transpl. 2002;11(2):95–101.

    Google Scholar 

  34. Faleo G, Fotino C, Bocca N, Molano RD, Zahr-Akrawi E, Molina J, et al. Prevention of autoimmune diabetes and induction of beta-cell proliferation in NOD mice by hyperbaric oxygen therapy. Diabetes. 2012;61(7):1769–78. doi:10.2337/db11-0516.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Matzinger P. Introduction to the series. Danger model of immunity. Scand J Immunol. 2001;54(1–2):2–3.

    Article  CAS  PubMed  Google Scholar 

  36. Ribeiro MM, Klein D, Pileggi A, Molano RD, Fraker C, Ricordi C, et al. Heme oxygenase-1 fused to a TAT peptide transduces and protects pancreatic beta-cells. Biochem Biophys Res Commun. 2003;305(4):876–81.

    Article  CAS  PubMed  Google Scholar 

  37. Fornoni A, Cobianchi L, Sanabria NY, Pileggi A, Molano RD, Ichii H, et al. The l-isoform but not d-isoforms of a JNK inhibitory peptide protects pancreatic beta-cells. Biochem Biophys Res Commun. 2007;354(1):227–33. doi:10.1016/j.bbrc.2006.12.186.

    Article  CAS  PubMed  Google Scholar 

  38. Fornoni A, Pileggi A, Molano RD, Sanabria NY, Tejada T, Gonzalez-Quintana J, et al. Inhibition of c-jun N terminal kinase (JNK) improves functional beta cell mass in human islets and leads to AKT and glycogen synthase kinase-3 (GSK-3) phosphorylation. Diabetologia. 2008;51(2):298–308. doi:10.1007/s00125-007-0889-4.

    Article  CAS  PubMed  Google Scholar 

  39. Bravo-Egana V, Rosero S, Klein D, Jiang Z, Vargas N, Tsinoremas N, et al. Inflammation-mediated regulation of microRNA expression in transplanted pancreatic islets. J Transpl. 2012;2012:723614. doi:10.1155/2012/723614.

    Google Scholar 

  40. Hogan AR, Doni M, Molano RD, Ribeiro MM, Szeto A, Cobianchi L, et al. Beneficial effects of ischemic preconditioning on pancreas cold preservation. Cell Transpl. 2012;21(7):1349–60. doi:10.3727/096368911X623853.

    Article  Google Scholar 

  41. Pileggi A, Klein D, Fotino C, Bravo-Engaña V, Doni M, Podetta M et al. MicroRNAs in islet autoimmunity and transplantation. Immunol Res. 2013. doi:10.1007/s12026-013-8436-5.

  42. Cechin SR, Perez-Alvarez I, Fenjves E, Molano RD, Pileggi A, Berggren PO, et al. Anti-inflammatory properties of exenatide in human pancreatic islets. Cell Transpl. 2012;21(4):633–48. doi:10.3727/096368911X576027.

    Article  CAS  Google Scholar 

  43. Martins PN, Chandraker A, Tullius SG. Modifying graft immunogenicity and immune response prior to transplantation: potential clinical applications of donor and graft treatment. Transpl Int. 2006;19(5):351–9. doi:10.1111/j.1432-2277.2006.00301.x.

    Article  PubMed  Google Scholar 

  44. Perico N, Cattaneo D, Sayegh MH, Remuzzi G. Delayed graft function in kidney transplantation. Lancet. 2004;364(9447):1814–27. doi:10.1016/S0140-6736(04)17406-0.

    Article  PubMed  Google Scholar 

  45. Pratschke J, Tullius SG, Neuhaus P. Brain death associated ischemia/reperfusion injury. Ann Transpl. 2004;9(1):78–80.

    Google Scholar 

  46. Shoskes DA, Halloran PF. Delayed graft function in renal transplantation: etiology, management and long-term significance. J Urol. 1996;155(6):1831–40.

    Article  CAS  PubMed  Google Scholar 

  47. Pileggi A, Molano RD, Berney T, Ichii H, San Jose S, Zahr E, et al. Prolonged allogeneic islet graft survival by protoporphyrins. Cell Transpl. 2005;14(2–3):85–96.

    Article  Google Scholar 

  48. Pileggi A, Molano RD, Berney T, Cattan P, Vizzardelli C, Oliver R, et al. Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. Diabetes. 2001;50(9):1983–91.

    Article  CAS  PubMed  Google Scholar 

  49. Molano RD, Pileggi A, Song S, Zahr E, San Jose S, Molina J, et al. Prolonged islet allograft survival by alpha-1 antitrypsin: the role of humoral immunity. Transpl Proc. 2008;40(2):455–6. doi:10.1016/j.transproceed.2008.02.009.

    Article  CAS  Google Scholar 

  50. Emamaullee JA, Davis J, Pawlick R, Toso C, Merani S, Cai SX, et al. Caspase inhibitor therapy synergizes with costimulation blockade to promote indefinite islet allograft survival. Diabetes. 2010;59(6):1469–77. doi:10.2337/db09-0502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Alejandro R, Barton FB, Hering BJ, Wease S. 2008 Update from the collaborative Islet transplant registry. Transplantation. 2008;86(12):1783–8.

    Article  PubMed  Google Scholar 

  52. Turgeon NA, Avila JG, Cano JA, Hutchinson JJ, Badell IR, Page AJ, et al. Experience with a novel efalizumab-based immunosuppressive regimen to facilitate single donor islet cell transplantation. Am J Transpl. 2010;10(9):2082–91. doi:10.1111/j.1600-6143.2010.03212.x.

    Article  CAS  Google Scholar 

  53. Hering BJ, Kandaswamy R, Ansite JD, Eckman PM, Nakano M, Sawada T, et al. Single-donor, marginal-dose islet transplantation in patients with type 1 diabetes. JAMA. 2005;293(7):830–5. doi:10.1001/jama.293.7.830.

    Article  CAS  PubMed  Google Scholar 

  54. Fotino C, Pileggi A. Blockade of leukocyte function antigen-1 (LFA-1) in clinical islet transplantation. Curr Diab Rep. 2011;11(5):337–44. doi:10.1007/s11892-011-0214-y.

    Article  PubMed  Google Scholar 

  55. Chowdhury SA, Nagata M, Yamada K, Nakayama M, Chakrabarty S, Jin Z, et al. Tolerance mechanisms in murine autoimmune diabetes induced by anti-ICAM-1/LFA-1 mAb and anti-CD8 mAb. Kobe J Med Sci. 2002;48(5–6):167–75.

    CAS  PubMed  Google Scholar 

  56. Hasegawa Y, Yokono K, Taki T, Amano K, Tominaga Y, Yoneda R, et al. Prevention of autoimmune insulin-dependent diabetes in non-obese diabetic mice by anti-LFA-1 and anti-ICAM-1 mAb. Int Immunol. 1994;6(6):831–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ninova D, Dean PG, Stegall MD. Immunomodulation through inhibition of multiple adhesion molecules generates resistance to autoimmune diabetes in NOD mice. J Autoimmun. 2004;23(3):201–9. doi:10.1016/j.jaut.2004.07.002.

    Article  CAS  PubMed  Google Scholar 

  58. Berney T, Pileggi A, Molano RD, Poggioli R, Zahr E, Ricordi C, et al. The effect of simultaneous CD154 and LFA-1 blockade on the survival of allogeneic islet grafts in nonobese diabetic mice. Transplantation. 2003;76(12):1669–74. doi:10.1097/01.TP.0000092525.17025.D0.

    Article  CAS  PubMed  Google Scholar 

  59. Molano RD, Berney T, Li H, Cattan P, Pileggi A, Vizzardelli C, et al. Prolonged islet graft survival in NOD mice by blockade of the CD40-CD154 pathway of T-cell costimulation. Diabetes. 2001;50(2):270–6.

    Article  CAS  PubMed  Google Scholar 

  60. Arefanian H, Tredget EB, Rajotte RV, Korbutt GS, Gill RG, Rayat GR. Combination of anti-CD4 with anti-LFA-1 and anti-CD154 monoclonal antibodies promotes long-term survival and function of neonatal porcine islet xenografts in spontaneously diabetic NOD mice. Cell Transpl. 2007;16(8):787–98.

    Article  Google Scholar 

  61. Molano RD, Pileggi A, Berney T, Poggioli R, Zahr E, Oliver R, et al. Prolonged islet allograft survival in diabetic NOD mice by targeting CD45RB and CD154. Diabetes. 2003;52(4):957–64.

    Article  CAS  PubMed  Google Scholar 

  62. Schenk U, Westendorf AM, Radaelli E, Casati A, Ferro M, Fumagalli M, et al. Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Sci Signal. 2008;1(39):ra6. doi:10.1126/scisignal.1160583.

    Article  PubMed  CAS  Google Scholar 

  63. Robson SC, Sevigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal. 2006;2(2):409–30. doi:10.1007/s11302-006-9003-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Chalmin F, Mignot G, Bruchard M, Chevriaux A, Vegran F, Hichami A, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity. 2012;36(3):362–73. doi:10.1016/j.immuni.2011.12.019.

    Article  CAS  PubMed  Google Scholar 

  65. Placido R, Auricchio G, Falzoni S, Battistini L, Colizzi V, Brunetti E, et al. P2X(7) purinergic receptors and extracellular ATP mediate apoptosis of human monocytes/macrophages infected with Mycobacterium tuberculosis reducing the intracellular bacterial viability. Cell Immunol. 2006;244(1):10–8. doi:10.1016/j.cellimm.2007.02.001.

    Article  CAS  PubMed  Google Scholar 

  66. Beigi RD, Kertesy SB, Aquilina G, Dubyak GR. Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms. Br J Pharmacol. 2003;140(3):507–19. doi:10.1038/sj.bjp.0705470.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Lappas CM, Rieger JM, Linden J. A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol. 2005;174(2):1073–80.

    Article  CAS  PubMed  Google Scholar 

  68. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204(6):1257–65. doi:10.1084/jem.20062512.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3 + Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110(4):1225–32. doi:10.1182/blood-2006-12-064527.

    Article  CAS  PubMed  Google Scholar 

  70. Romio M, Reinbeck B, Bongardt S, Huls S, Burghoff S, Schrader J. Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am J Physiol Cell Physiol. 2011;301(2):C530–9. doi:10.1152/ajpcell.0 0385.2010.

    Article  CAS  PubMed  Google Scholar 

  71. Ghaemi Oskouie F, Shameli A, Yang A, Desrosiers MD, Mucsi AD, Blackburn MR, et al. High levels of adenosine deaminase on dendritic cells promote autoreactive T cell activation and diabetes in nonobese diabetic mice. J Immunol. 2011;186(12):6798–806. doi:10.4049/jimmunol.1004222.

    Article  CAS  PubMed  Google Scholar 

  72. Vergani A, Fotino C, D’Addio F, Tezza S, Podetta M, Gatti F, et al. Effect of the purinergic inhibitor oxidized ATP in a model of islet allograft rejection. Diabetes. 2013;62(5):1665–75. doi:10.2337/db12-0242.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Vergani A, Tezza S, D’Addio F, Fotino C, Liu K, Niewczas M, et al. Long-term heart transplant survival by targeting the ionotropic purinergic receptor P2X7. Circulation. 2013;127(4):463–75. doi:10.1161/CIRCULATIONAHA.112.123653.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Jacques-Silva MC, Correa-Medina M, Cabrera O, Rodriguez-Diaz R, Makeeva N, Fachado A, et al. ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc Natl Acad Sci USA. 2010;107(14):6465–70. doi:10.1073/pnas.0908935107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Kittel A, Garrido M, Varga G. Localization of NTPDase1/CD39 in normal and transformed human pancreas. J Histochem Cytochem. 2002;50(4):549–56.

    Article  CAS  PubMed  Google Scholar 

  76. Ricordi C. Islet transplantation: a brave new world. Diabetes. 2003;52(7):1595–603.

    Article  CAS  PubMed  Google Scholar 

  77. Kemp CB, Knight MJ, Scharp DW, Ballinger WF, Lacy PE. Effect of transplantation site on the results of pancreatic islet isografts in diabetic rats. Diabetologia. 1973;9(6):486–91.

    Article  CAS  PubMed  Google Scholar 

  78. Scharp DW, Marchetti P, Swanson C, Newton M, McCullough CS, Olack B. The effect of transplantation site and islet mass on long-term survival and metabolic and hormonal function of canine purified islet autografts. Cell Transpl. 1992;1(2–3):245–54.

    CAS  Google Scholar 

  79. Ricordi C, Scharp DW, Lacy PE. Reversal of diabetes in nude mice after transplantation of fresh and 7-day-cultured (24 °C) human pancreatic islets. Transplantation. 1988;45(5):994–6.

    Article  CAS  PubMed  Google Scholar 

  80. Lanza RP, Borland KM, Lodge P, Carretta M, Sullivan SJ, Muller TE, et al. Treatment of severely diabetic pancreatectomized dogs using a diffusion-based hybrid pancreas. Diabetes. 1992;41(7):886–9.

    Article  CAS  PubMed  Google Scholar 

  81. Petruzzo P, Pibiri L, De Giudici MA, Basta G, Calafiore R, Falorni A, et al. Xenotransplantation of microencapsulated pancreatic islets contained in a vascular prosthesis: preliminary results. Transpl Int. 1991;4(4):200–4.

    Article  CAS  PubMed  Google Scholar 

  82. Pileggi A, Molano RD, Ricordi C, Zahr E, Collins J, Valdes R, et al. Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation. 2006;81(9):1318–24.

    Article  PubMed  Google Scholar 

  83. Yasunami Y, Lacy PE, Finke EH. A new site for islet transplantation—a peritoneal-omental pouch. Transplantation. 1983;36(2):181–2.

    Article  CAS  PubMed  Google Scholar 

  84. Guan J, Zucker PF, Atkison P, Behme MT, Dupre J, Stiller CR. Liver-omental pouch and intrahepatic islet transplants produce portal insulin delivery and prevent hyperinsulinemia in rats. Transpl Proc. 1995;27(6):3236.

    CAS  Google Scholar 

  85. Guan J, Behme MT, Zucker P, Atkison P, Hramiak I, Zhong R, et al. Glucose turnover and insulin sensitivity in rats with pancreatic islet transplants. Diabetes. 1998;47(7):1020–6.

    Article  CAS  PubMed  Google Scholar 

  86. Kin T, Korbutt GS, Rajotte RV. Survival and metabolic function of syngeneic rat islet grafts transplanted in the omental pouch. Am J Transpl. 2003;3(3):281–5.

    Article  Google Scholar 

  87. Kenyon NS, Berman DM, O’Neil JJ, Kenyon NM, Zimmerman M, Pileggi A, et al. Survival and function of allogeneic islets implanted in an omental pouch in cynomolgus monkeys (Macaca fascicularis). Xenotransplantation. 2007;14(5):406.

    Google Scholar 

  88. Ao Z, Matayoshi K, Yakimets WJ, Katyal D, Rajotte RV, Warnock GL. Development of an omental pouch site for islet transplantation. Transpl Proc. 1992;24(6):2789.

    CAS  Google Scholar 

  89. Ao Z, Matayoshi K, Lakey JR, Rajotte RV, Warnock GL. Survival and function of purified islets in the omental pouch site of outbred dogs. Transplantation. 1993;56(3):524–9.

    Article  CAS  PubMed  Google Scholar 

  90. Simeonovic CJ, Dhall DP, Wilson JD, Lafferty KJ. A comparative study of transplant sites for endocrine tissue transplantation in the pig. Aust J Exp Biol Med Sci. 1986;64(Pt 1):37–41.

    Article  PubMed  Google Scholar 

  91. Weber CJ, Hardy MA, Pi-Sunyer F, Zimmerman E, Reemtsma K. Tissue culture preservation and intramuscular transplantation of pancreatic islets. Surgery. 1978;84(1):166–74.

    CAS  PubMed  Google Scholar 

  92. Rafael E, Tibell A, Ryden M, Lundgren T, Savendahl L, Borgstrom B et al. Intramuscular autotransplantation of pancreatic islets in a 7-year-old child: a 2-year follow-up. Am J Transpl. 2008;8(2):458–62.

    Google Scholar 

  93. Speier S, Nyqvist D, Cabrera O, Yu J, Molano RD, Pileggi A, et al. Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med. 2008;14(5):574–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Abdulreda MH, Faleo G, Molano RD, Lopez-Cabezas M, Molina J, Tan Y, et al. High-resolution, noninvasive longitudinal live imaging of immune responses. Proc Natl Acad Sci USA. 2011;108(31):12863–8. doi:10.1073/pnas.1105002108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Perez VL, Caicedo A, Berman DM, Arrieta E, Abdulreda MH, Rodriguez-Diaz R, et al. The anterior chamber of the eye as a clinical transplantation site for the treatment of diabetes: a study in a baboon model of diabetes. Diabetologia. 2011;54(5):1121–6. doi:10.1007/s00125-011-2091-y.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Kakabadze Z, Gupta S, Pileggi A, Molano RD, Ricordi C, Shatirishvili G, et al. Correction of diabetes mellitus by transplanting minimal mass of syngeneic islets into vascularized small intestinal segment. Am J Transpl. 2013. doi:10.1111/ajt.12412.

    Google Scholar 

  97. Joseph B, Berishvili E, Benten D, Kumaran V, Liponava E, Bhargava K, et al. Isolated small intestinal segments support auxiliary livers with maintenance of hepatic functions. Nat Med. 2004;10(7):749–53.

    Article  CAS  PubMed  Google Scholar 

  98. Cantarelli E, Melzi R, Mercalli A, Sordi V, Ferrari G, Lederer CW, et al. Bone marrow as an alternative site for islet transplantation. Blood. 2009;114(20):4566–74. doi:10.1182/blood-2009-03-209973.

    Article  CAS  PubMed  Google Scholar 

  99. Cantarelli E, Piemonti L. Alternative transplantation sites for pancreatic islet grafts. Curr Diab Rep. 2011;11(5):364–74. doi:10.1007/s11892-011-0216-9.

    Article  PubMed  Google Scholar 

  100. Brady AC, Martino MM, Pedraza E, Sukert S, Pileggi A, Ricordi C, et al. Proangiogenic hydrogels within macroporous scaffolds enhance islet engraftment in an extrahepatic site. Tissue Eng Part A. 2013. doi:10.1089/ten.TEA.2012.0686.

    PubMed Central  PubMed  Google Scholar 

  101. Wang Y, Lanzoni G, Carpino G, Cui CB, Dominguez-Bendala J, Wauthier E et al. Biliary tree stem cells, precursors to pancreatic committed progenitors: evidence for possible life-long pancreatic organogenesis. Stem cells (Dayton, Ohio). 2013. doi:10.1002/stem.1460.

  102. Rafael E, Tibell A, Ryden M, Lundgren T, Savendahl L, Borgstrom B, et al. Intramuscular autotransplantation of pancreatic islets in a 7-year-old child: a 2-year follow-up. Am J Transplant. 2008;8(2):458–62. doi:10.1111/j.1600-6143.2007.02060.x.

    Article  CAS  PubMed  Google Scholar 

  103. Dardenne S, Sterkers A, Leroy C, Da Mata L, Zerbib P, Pruvot FR, et al. Laparoscopic spleen-preserving distal pancreatectomy followed by intramuscular autologous islet transplantation for traumatic pancreatic transection in a young adult. JOP. 2012;13(3):285–8.

    PubMed  Google Scholar 

  104. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 year after xenotransplantation. Xenotransplantation. 2007;14(2):157–61. doi:10.1111/j.1399-3089.2007.00384.x.

    Article  PubMed  Google Scholar 

  105. Basta G, Montanucci P, Luca G, Boselli C, Noya G, Barbaro B, et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care. 2011;34(11):2406–9. doi:10.2337/dc11-0731.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Maffi P, Balzano G, Ponzoni M, Nano R, Sordi V, Melzi R, et al. Autologous pancreatic islet transplantation in human bone marrow. Diabetes. 2013. doi:10.2337/db13-0465.

    Google Scholar 

  107. Berman DM, O’Neil JJ, Coffey LC, Chaffanjon PC, Kenyon NM, Ruiz P Jr, et al. Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold. Am J Transplant. 2009;9(1):91–104. doi:10.1111/j.1600-6143.2008.02489.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Pedraza E, Brady AC, Fraker CA, Molano RD, Sukert S, Berman DM, et al. Macroporous three-dimensional PDMS scaffolds for extrahepatic islet transplantation. Cell Transpl. 2013;22(7):1123–35. doi:10.3727/096368912X657440.

    Article  Google Scholar 

  109. Giuliani M, Moritz W, Bodmer E, Dindo D, Kugelmeier P, Lehmann R, et al. Central necrosis in isolated hypoxic human pancreatic islets: evidence for postisolation ischemia. Cell Transpl. 2005;14(1):67–76.

    Article  Google Scholar 

  110. Moritz W, Meier F, Stroka DM, Giuliani M, Kugelmeier P, Nett PC, et al. Apoptosis in hypoxic human pancreatic islets correlates with HIF-1alpha expression. Faseb J. 2002;16(7):745–7.

    CAS  PubMed  Google Scholar 

  111. Emamaullee JA, Rajotte RV, Liston P, Korneluk RG, Lakey JR, Shapiro AM, et al. XIAP overexpression in human islets prevents early posttransplant apoptosis and reduces the islet mass needed to treat diabetes. Diabetes. 2005;54(9):2541–8.

    Article  CAS  PubMed  Google Scholar 

  112. Li X, Chen H, Epstein PN. Metallothionein protects islets from hypoxia and extends islet graft survival by scavenging most kinds of reactive oxygen species. J Biol Chem. 2004;279(1):765–71.

    Article  CAS  PubMed  Google Scholar 

  113. Bocca N, Ricordi C, Kenyon NS, Latta P, Buchwald P. 3-D multiphysics FEM modeling to optimize local drug delivery in a biohybrid device designed for cell transplant. In: Proceedings of the Comsol Conference. 2007. p. 101–7.

  114. Bocca N, Pileggi A, Molano RD, Marzorati S, Wu W, Bodor N et al. Soft corticosteroids for local immunosuppression: exploring the possibility for the use of loteprednol etabonate in islet transplantation. Pharmazie. 2008;63(3):226–32.

    Google Scholar 

  115. Buchwald P, Bocca N, Marzorati S, Hochhaus G, Bodor N, Stabler C, et al. Feasibility of localized immunosuppression: 1. Exploratory studies with glucocorticoids in a biohybrid device designed for cell transplantation. Pharmazie. 2010;65(6):421–8.

    CAS  PubMed  Google Scholar 

  116. Ahlgren U, Gotthardt M. Approaches for imaging islets: recent advances and future prospects. Adv Exp Med Biol. 2010;654:39–57.

    Article  PubMed  Google Scholar 

  117. Berney T, Toso C. Monitoring of the islet graft. Diabetes Metab. 2006;32(5 Pt 2):503–12.

    Article  CAS  PubMed  Google Scholar 

  118. Medarova Z, Moore A. MRI as a tool to monitor islet transplantation. Nat Rev. 2009;5(8):444–52.

    Google Scholar 

  119. Eriksson O, Eich T, Sundin A, Tibell A, Tufveson G, Andersson H, et al. Positron emission tomography in clinical islet transplantation. Am J Transpl. 2009;9(12):2816–24.

    Article  CAS  Google Scholar 

  120. Eriksson O, Jahan M, Johnstrom P, Korsgren O, Sundin A, Halldin C, et al. In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cell mass. Nucl Med Biol. 2010;37(3):357–63.

    Article  CAS  PubMed  Google Scholar 

  121. Prescher JA, Contag CH. Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol. 2010;14(1):80–9.

    Article  CAS  PubMed  Google Scholar 

  122. Speier S, Nyqvist D, Kohler M, Caicedo A, Leibiger IB, Berggren PO. Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye. Nat Protoc. 2008;3(8):1278–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Martinic MM, von Herrath MG. Real-time imaging of the pancreas during development of diabetes. Immunol Rev. 2008;221:200–13.

    Article  CAS  PubMed  Google Scholar 

  124. Nyman LR, Wells KS, Head WS, McCaughey M, Ford E, Brissova M, et al. Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J Clin Investig. 2008;118(11):3790–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Molano RD, Abdulreda M, Faleo G, Molina J, Berggren PO, Ricordi C, et al. Allogeneic islet transplantation in the anterior chamber of the eye for in vivo studies of islet immunobiology. Diabetes. 2009;58:A499.

    Article  CAS  Google Scholar 

  126. Nyqvist D, Speier S, Rodriguez-Diaz R, Molano RD, Lipovsek S, Rupnik M, et al. Donor islet endothelial cells in pancreatic islet revascularization. Diabetes. 2011;60(10):2571–7. doi:10.2337/db10-1711.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Fan Z, Spencer JA, Lu Y, Pitsillides CM, Singh G, Kim P, et al. In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response. Nat Med. 2010;16(6):718–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Abdulreda MH, Caicedo A, Berggren PO. A natural body window to study human pancreatic islet function and survival. CellR4. 2013;1(2):111–22.

    Google Scholar 

Download references

Acknowledgments

We are grateful to the faculty and staff at the Diabetes Research Institute (www.DiabetesResearch.org) and to the collaborators from multiple national and international institutions, including the members of the Diabetes Research Institute Federation (/www.diabetesresearch.org/DRI-Federation-Members?) and of The Cure Alliance (www.TheCureAlliance.org) contributing to our transdisciplinary research team endeavors. The work discussed herein is integral part of the Diabetes Research Institute’s BioHub© Mini Organ Program. Invaluable assistance was obtained through the Diabetes Research Institute’s Cores (Preclinical Cell Processing & Translational Models, Human cGMP Cell Processing, Imaging, Flow Cytometry, Histology, and Administrative) and through the University of Miami Division of Veterinary Resources and the DNA Core for Bioluminiscence Imaging. Procedures involving animals were performed under protocols approved and monitored by the University of Miami IACUC under an Animal Welfare Assurance on file (A-3224-01, effective 12/4/02) with the Office of Laboratory Animal Welfare (OLAW), National Institutes of Health, and full accreditation by the Association for Assessment and Accreditation of Laboratory Animal Care. The biohybrid device was designed and manufactured by Biorep, Inc. (Miami, FL). Human islets were obtained through NIH-NCRR Islet Cell Resources (ICR) and subsequently from the Integrated Islet Distribution Program (IIDP). This work was supported in part by grants from the American Diabetes Association (7-13-IN-32; to A.P.), the Juvenile Diabetes Research Foundation International (17-2012-361, 17-2010-5, 4-2008-811, 4-2004-361, to C.R. and A.P.), The Leona M. and Harry B. Helmsley Charitable Trust, the National Institutes of Health (5U19AI050864-10 to A.P.; U01DK089538 to A.P.; 5U42RR016603-08S1 to C.R.; 1U01DK70460-02 to C.R.; 5R01DK25802-24 to C.R.; 5R01DK56953-05 to C.R.), the University of Miami Interdisciplinary Research Development Initiative (A.P.), and the Diabetes Research Institute Foundation (to A.P., C.R.), and Converge Biotech (A.P. and C.R.). Notably, the funding agencies had no role in the design and conduct of the study, collection, management, analysis and interpretation of the data, content, presentation, decision to publish, or preparation of the manuscript.

Conflict of interest

C.F., R.D.M., C.R. and A.P. own intellectual property that may be related to the topic discussed in this article. A.P. and C.R. are members of the scientific advisory board; and A.P., R.D.M., and C.R. are stock option holders in Converge Biotech, licensee of some of the intellectual property that may be related to the topic discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Pileggi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fotino, C., Molano, R.D., Ricordi, C. et al. Transdisciplinary approach to restore pancreatic islet function. Immunol Res 57, 210–221 (2013). https://doi.org/10.1007/s12026-013-8437-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8437-4

Keywords

Navigation