Skip to main content

Cell Transplantation Therapy for Diabetes Mellitus: From Embryonic Stem Cells to Transdifferentiation of Adult Cells

  • Chapter
  • First Online:
Stem Cells: Basics and Clinical Translation

Part of the book series: Translational Medicine Research ((TRAMERE,volume 1))

  • 1275 Accesses

Abstract

Pancreatic transplant and islet cell transplantation are alternative procedure to “cure” diabetes. The last one has already become an accepted practice to stabilize frequent hypoglycemia or severe glycemic lability in highly selected subjects with poor glycemic control. Advancements during the last decade in the fields of regenerative medicine, tissue engineering, immunomodulatory therapy, and gene therapy have drawn us a step closer to making the application of stem cell therapy a feasible reality in the cure of diabetes. However, a combinatorial approach that can combine safe and effective stem cell strategies with reliable existing therapies such as islet transplantation, as well as the latest immunosuppressive and immunomodulatory drug regimens and/or novel bioengineering techniques, would ensure an optimistic scenario for successful translation of stem cell therapy in the cure of diabetes. In short, the application of stem cell therapy in the cure for diabetes appears extremely promising, with bona fide hope for a permanent cure.

The two authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  CAS  PubMed  Google Scholar 

  • Baeyens L, Bouwens L. Can beta-cells be derived from exocrine pancreas? Diab Obes Metab. 2008;10(Suppl 4):170–8.

    Article  Google Scholar 

  • Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, Oberholzer J, Odorico JS, Garfinkel MR, Levy M, Pattou F, Berney T, Secchi A, Messinger S, Senior PA, Maffi P, Posselt A, Stock PG, Kaufman DB, Luo X, Kandeel F, Cagliero E, Turgeon NA, Witkowski P, Naji A, O’Connell PJ, Greenbaum C, Kudva YC, Brayman KL, Aull MJ, Larsen C, Kay TW, Fernandez LA, Vantyghem MC, Bellin M, Shapiro AM. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diab Care. 2012;35:1436–45.

    Article  CAS  Google Scholar 

  • Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabet Metab Syndr Obes Targets Ther. 2014;7:211–23.

    CAS  Google Scholar 

  • Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol. 2009;217:318–24.

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    Article  CAS  PubMed  Google Scholar 

  • Chandra V, Swetha G, Muthyala S, Jaiswal AK, Bellare JR, Nair PD, Bhonde RR. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS One. 2011;6:e20615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang CM, Kao CL, Chang YL, Yang MJ, Chen YC, Sung BL, Tsai TH, Chao KC, Chiou SH, Ku HH. Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem Biophys Res Commun. 2007;357:414–20.

    Article  CAS  PubMed  Google Scholar 

  • Chao KC, Chao KF, Fu YS, Liu SH. Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One. 2008;3:e1451.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen G, Hohmeier HE, Gasa R, Tran VV, Newgard CB. Selection of insulinoma cell lines with resistance to interleukin-1beta- and gamma-interferon-induced cytotoxicity. Diabetes. 2000;49:562–70.

    Article  CAS  PubMed  Google Scholar 

  • Ciancio G, Lo Monte A, Buscemi G, Miller J, Burke GW. Use of tacrolimus and mycophenolate mofetil as induction and maintenance in simultaneous pancreas-kidney transplantation. Transpl Int Official J Eur Soc Organ Transplant. 2000a;13(Suppl 1):S191–4.

    Article  Google Scholar 

  • Ciancio G, Lo Monte A, Julian JF, Romano M, Miller J, Burke GW. Vascular complications following bladder drained, simultaneous pancreas-kidney transplantation: the University of Miami experience. Transpl Int Official J Eur Soc Organ Transplant. 2000b;13(Suppl 1):S187–90.

    Article  Google Scholar 

  • Constantin G, Marconi S, Rossi B, Angiari S, Calderan L, Anghileri E, Gini B, Bach SD, Martinello M, Bifari F, Galie M, Turano E, Budui S, Sbarbati A, Krampera M, Bonetti B. Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells. 2009;27:2624–35.

    Article  CAS  PubMed  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401.

    Article  PubMed  Google Scholar 

  • Davey GC, Patil SB, O’Loughlin A, O’Brien T. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol. 2014;5:86.

    Article  Google Scholar 

  • de Kort H, de Koning EJ, Rabelink TJ, Bruijn JA, Bajema IM. Islet transplantation in type 1 diabetes. BMJ. 2011;342:d217.

    Article  PubMed  Google Scholar 

  • Di Santo S, Yang Z, Wyler von Ballmoos M, Voelzmann J, Diehm N, Baumgartner I, Kalka C. Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS One. 2009;4:e5643.

    Article  PubMed Central  PubMed  Google Scholar 

  • Figliuzzi M, Bonandrini B, Silvani S, Remuzzi A. Mesenchymal stem cells help pancreatic islet transplantation to control type 1 diabetes. World J Stem Cells. 2014;6:163–72.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fox JM, Chamberlain G, Ashton BA, Middleton J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol. 2007;137:491–502.

    Article  CAS  PubMed  Google Scholar 

  • Group CR. 2007 update on allogeneic islet transplantation from the Collaborative Islet Transplant Registry (CITR). Cell Transpl. 2009;18:753–67.

    Article  Google Scholar 

  • Gruessner AC. 2011 update on pancreas transplantation: comprehensive trend analysis of 25,000 cases followed up over the course of twenty-four years at the International Pancreas Transplant Registry (IPTR). The review of diabetic studies : RDS. 2011;8:6–16.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hematti P, Kim J, Stein AP, Kaufman D. Potential role of mesenchymal stromal cells in pancreatic islet transplantation. Transplant Rev. 2013;27:21–9.

    Article  Google Scholar 

  • Hirshberg B. Implications of the 2008 update from the collaborative islet transplant registry. Curr Diab Rep. 2009;9:258–9.

    Article  PubMed  Google Scholar 

  • Hughes A, Rojas-Canales D, Drogemuller C, Voelcker NH, Grey ST, Coates PT. IGF2: an endocrine hormone to improve islet transplant survival. J Endocrinol. 2014;221:R41–8.

    Article  CAS  PubMed  Google Scholar 

  • Humar A, Kandaswamy R, Granger D, Gruessner RW, Gruessner AC, Sutherland DE. Decreased surgical risks of pancreas transplantation in the modern era. Ann Surg. 2000;231:269–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ireland R. Transplantation: effect of pancreas-after-kidney transplant on renal graft survival. Nat Rev Nephrol. 2011;7:486.

    Article  PubMed  Google Scholar 

  • Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells. 2007;25:1940–53.

    Article  CAS  PubMed  Google Scholar 

  • Jourdan G, Dusseault J, Benhamou PY, Rosenberg L, Halle JP. Co-encapsulation of bioengineered IGF-II-producing cells and pancreatic islets: effect on beta-cell survival. Gene Ther. 2011;18:539–45.

    Article  CAS  PubMed  Google Scholar 

  • Kadam SS, Bhonde RR. Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesenchymal stem cells. Islets. 2010;2:112–20.

    Article  PubMed  Google Scholar 

  • Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes. 2005;54:1009–22.

    Article  CAS  PubMed  Google Scholar 

  • Kelly WD, Lillehei RC, Merkel FK, Idezuki Y, Goetz FC. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery. 1967;61:827–37.

    CAS  PubMed  Google Scholar 

  • Kordowich S, Mansouri A, Collombat P. Reprogramming into pancreatic endocrine cells based on developmental cues. Mol Cell Endocrinol. 2010;323:62–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Han DJ, Kim SC. In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochem Biophys Res Commun. 2008;375:547–51.

    Article  CAS  PubMed  Google Scholar 

  • Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A, Connolly AJ, Robbins RC, Wu JC. Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle. 2009;8:2608–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindahl JP, Hartmann A, Horneland R, Holdaas H, Reisaeter AV, Midtvedt K, Leivestad T, Oyen O, Jenssen T. Improved patient survival with simultaneous pancreas and kidney transplantation in recipients with diabetic end-stage renal disease. Diabetologia. 2013;56:1364–71.

    Article  CAS  PubMed  Google Scholar 

  • Lo Monte AI, Ciancio G, Burke G, Roth D, Miller J. The new immunosuppressive era. Ann Ital Chir. 1999;70:1–19.

    CAS  PubMed  Google Scholar 

  • Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001;292:1389–94.

    Article  CAS  PubMed  Google Scholar 

  • Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA. 2009;106:15768–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA. Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes. 2004;53:91–8.

    Article  CAS  PubMed  Google Scholar 

  • Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC, Sung SM, Jung JS. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2006;17:279–90.

    Article  CAS  Google Scholar 

  • Najarian JS, Sutherland DE, Matas AJ, Steffes MW, Simmons RL, Goetz FC. Human islet transplantation: a preliminary report. Transpl Proc. 1977;9:233–6.

    CAS  Google Scholar 

  • Nanji SA, Shapiro AM. Advances in pancreatic islet transplantation in humans. Diab Obes Metab. 2006;8:15–25.

    Article  Google Scholar 

  • Noguchi H, Naziruddin B, Shimoda M, Fujita Y, Chujo D, Takita M, Peng H, Sugimoto K, Itoh T, Tamura Y, Olsen GS, Kobayashi N, Onaca N, Hayashi S, Levy MF, Matsumoto S. Induction of insulin-producing cells from human pancreatic progenitor cells. Transpl Proc. 2010;42:2081–3.

    Article  CAS  Google Scholar 

  • Park KS, Kim YS, Kim JH, Choi B, Kim SH, Tan AH, Lee MS, Lee MK, Kwon CH, Joh JW, Kim SJ, Kim KW. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation. 2010;89:509–17.

    CAS  PubMed  Google Scholar 

  • Pepper AR, Gala-Lopez B, Ziff O, Shapiro AM. Revascularization of transplanted pancreatic islets and role of the transplantation site. Clin Dev Immunol. 2013;2013:352315.

    Article  PubMed Central  PubMed  Google Scholar 

  • Phadnis SM, Joglekar MV, Dalvi MP, Muthyala S, Nair PD, Ghaskadbi SM, Bhonde RR, Hardikar AA. Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo. Cytotherapy. 2011;13:279–93.

    Article  PubMed  Google Scholar 

  • Poradzka A, Wronski J, Jasik M, Karnafel W, Fiedor P. Insulin replacement therapy in patients with type 1 diabetes by isolated pancreatic islet transplantation. Acta Pol Pharm. 2013;70:943–50.

    CAS  PubMed  Google Scholar 

  • Robertson RP. Islet transplantation a decade later and strategies for filling a half-full glass. Diabetes. 2010;59:1285–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryan EA, Bigam D, Shapiro AM. Current indications for pancreas or islet transplant. Diab Obes Metab. 2006;8:1–7.

    Article  Google Scholar 

  • Saidi RF. Current status of pancreas and islet cell transplantation. Int J Organ Transplant Med. 2012;3:54–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scharp DW, Kemp CB, Knight MJ, Ballinger WF, Lacy PE. The use of ficoll in the preparation of viable islets of langerhans from the rat pancreas. Transplantation. 1973;16:686–9.

    Article  CAS  PubMed  Google Scholar 

  • Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G, van der Kooy D. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol. 2004;22:1115–24.

    Article  CAS  PubMed  Google Scholar 

  • Silverstein J, Klingensmith G, Copeland K, Plotnick L, Kaufman F, Laffel L, Deeb L, Grey M, Anderson B, Holzmeister LA, Clark N, American Diabetes A. Care of children and adolescents with type 1 diabetes: a statement of the American Diabetes Association. Diab Care. 2005;28:186–212.

    Article  Google Scholar 

  • Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood. 2005;106:419–27.

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Roh KH, Lee SR, Lee YS, Kang KS. Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structure. Biochem Biophys Res Commun. 2007;354:919–23.

    Article  CAS  PubMed  Google Scholar 

  • Tateishi K, He J, Taranova O, Liang G, D’Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem. 2008;283:31601–7.

    Article  CAS  PubMed  Google Scholar 

  • Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Muller B, Zulewski H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341:1135–40.

    Article  CAS  PubMed  Google Scholar 

  • Veriter S, Gianello P, Dufrane D. Bioengineered sites for islet cell transplantation. Curr Diab Rep. 2013;13:745–55.

    Article  CAS  PubMed  Google Scholar 

  • Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B, Wu YL. Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differ Res Biol Div. 2009;77:483–91.

    CAS  Google Scholar 

  • Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, Peck AB. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA. 2002;99:8078–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xiao, X., Liu, Y. (2015). Cell Transplantation Therapy for Diabetes Mellitus: From Embryonic Stem Cells to Transdifferentiation of Adult Cells. In: Zhao, R. (eds) Stem Cells: Basics and Clinical Translation. Translational Medicine Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7273-0_21

Download citation

Publish with us

Policies and ethics