Skip to main content

Advertisement

Log in

The role of activation-induced deaminase in antibody diversification and genomic instability

  • Immunology in Colorado
  • Published:
Immunologic Research Aims and scope Submit manuscript

An Erratum to this article was published on 27 July 2013

Abstract

More than a decade ago, activation-induced deaminase (AID) was identified as the initiator for somatic hypermutation (SHM) and class switch recombination (CSR). Since then, tremendous progress has been achieved toward elucidating how AID functions. AID targets the highly repetitive switch regions of the immunoglobulin heavy chain (IgH) locus to induce DNA double-strand breaks (DSBs), which can be rejoined, leading to switch of constant regions of antibody. When targeting to variable region exons of IgH and IgL loci, AID predominantly induces point mutations, termed SHM, resulting in increased affinity of antibody for antigen. While SHM and CSR enhance antibody diversity, AID-initiated DSBs and mutations may predispose B cells to carcinogenesis. This review focuses on the mechanisms that provide the specificity of AID targeting to Ig loci and the role of AID in genomic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999;274:18470–6.

    Article  PubMed  CAS  Google Scholar 

  2. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.

    Article  PubMed  CAS  Google Scholar 

  3. Ganesh K, Neuberger MS. The relationship between hypothesis and experiment in unveiling the mechanisms of antibody gene diversification. FASEB J. 2011;25:1123–32.

    Article  PubMed  CAS  Google Scholar 

  4. Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol. 2006;24:541–70.

    Article  PubMed  CAS  Google Scholar 

  5. Delker RK, Fugmann SD, Papavasiliou FN. A coming-of-age story: activation-induced cytidine deaminase turns. Nat Immunol. 2009;10:1147–53.

    Article  PubMed  CAS  Google Scholar 

  6. Kothapalli NR, Fugmann SD. Targeting of AID-mediated sequence diversification to immunoglobulin genes. Curr Opin Immunol. 2011;23:184–9.

    Article  PubMed  CAS  Google Scholar 

  7. Maul RW, Gearhart PJ. Controlling somatic hypermutation in immunoglobulin variable and switch regions. Immunol Res. 2010;47:113–22.

    Article  PubMed  CAS  Google Scholar 

  8. Pavri R, Nussenzweig MC. AID targeting in antibody diversity. Adv Immunol. 2011;110:1–26.

    Article  PubMed  CAS  Google Scholar 

  9. Stavnezer J. Complex regulation and function of activation-induced cytidine deaminase. Trends Immunol. 2011;32:194–201.

    Article  PubMed  CAS  Google Scholar 

  10. Storck S, Aoufouchi S, Weill JC, Reynaud CA. AID and partners: for better and (not) for worse. Curr Opin Immunol. 2011;23:337–44.

    Article  PubMed  CAS  Google Scholar 

  11. Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol. 2005;86:43–112.

    Article  PubMed  CAS  Google Scholar 

  12. Fu YX, Chaplin DD. Development and maturation of secondary lymphoid tissues. Annu Rev Immunol. 1999;17:399–433.

    Article  PubMed  CAS  Google Scholar 

  13. Honjo T, Kinoshita K, Muramatsu M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol. 2002;20:165–96.

    Article  PubMed  CAS  Google Scholar 

  14. Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 2007;76:1–22.

    Article  PubMed  CAS  Google Scholar 

  15. Longerich S, Basu U, Alt F, Storb U. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol. 2006;18:164–74.

    Article  PubMed  CAS  Google Scholar 

  16. Nagaoka H, Muramatsu M, Yamamura N, Kinoshita K, Honjo T. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J Exp Med. 2002;195:529–34.

    Article  PubMed  CAS  Google Scholar 

  17. Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, et al. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol. 2007;94:157–214.

    Article  PubMed  CAS  Google Scholar 

  18. Stavnezer J, Guikema JE, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol. 2008;26:261–92.

    Article  PubMed  CAS  Google Scholar 

  19. Hackney JA, Misaghi S, Senger K, Garris C, Sun Y, Lorenzo MN, et al. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv Immunol. 2009;101:163–89.

    Article  PubMed  CAS  Google Scholar 

  20. Manis JP, Tian M, Alt FW. Mechanism and control of class-switch recombination. Trends Immunol. 2002;23:31–9.

    Article  PubMed  CAS  Google Scholar 

  21. Neuberger MS, Harris RS, Di Noia J, Petersen-Mahrt SK. Immunity through DNA deamination. Trends Biochem Sci. 2003;28:305–12.

    Article  PubMed  CAS  Google Scholar 

  22. Neuberger MS, Rada C. Somatic hypermutation: activation-induced deaminase for C/G followed by polymerase eta for A/T. J Exp Med. 2007;204:7–10.

    Article  PubMed  CAS  Google Scholar 

  23. Martomo SA, Yang WW, Gearhart PJ. A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination. J Exp Med. 2004;200:61–8.

    Article  PubMed  CAS  Google Scholar 

  24. Rada C, Ehrenstein MR, Neuberger MS, Milstein C. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity. 1998;9:135–41.

    Article  PubMed  CAS  Google Scholar 

  25. Shen HM, Tanaka A, Bozek G, Nicolae D, Storb U. Somatic hypermutation and class switch recombination in Msh6(−/−)Ung(−/−) double-knockout mice. J Immunol. 2006;177:5386–92.

    PubMed  CAS  Google Scholar 

  26. Bardwell PD, Woo CJ, Wei K, Li Z, Martin A, Sack SZ, et al. Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice. Nat Immunol. 2004;5:224–9.

    Article  PubMed  CAS  Google Scholar 

  27. Delbos F, De Smet A, Faili A, Aoufouchi S, Weill JC, Reynaud CA. Contribution of DNA polymerase eta to immunoglobulin gene hypermutation in the mouse. J Exp Med. 2005;201:1191–6.

    Article  PubMed  CAS  Google Scholar 

  28. Martomo SA, Yang WW, Wersto RP, Ohkumo T, Kondo Y, Yokoi M, et al. Different mutation signatures in DNA polymerase eta- and MSH6-deficient mice suggest separate roles in antibody diversification. Proc Natl Acad Sci USA. 2005;102:8656–61.

    Article  PubMed  CAS  Google Scholar 

  29. Zeng X, Winter DB, Kasmer C, Kraemer KH, Lehmann AR, Gearhart PJ. DNA polymerase eta is an A–T mutator in somatic hypermutation of immunoglobulin variable genes. Nat Immunol. 2001;2:537–41.

    Article  PubMed  CAS  Google Scholar 

  30. Franklin A, Blanden RV. A/T-targeted somatic hypermutation: critique of the mainstream model. Trends Biochem Sci. 2006;31:252–8.

    Article  PubMed  CAS  Google Scholar 

  31. Matsuda T, Bebenek K, Masutani C, Hanaoka F, Kunkel TA. Low fidelity DNA synthesis by human DNA polymerase-eta. Nature. 2000;404:1011–3.

    Article  PubMed  CAS  Google Scholar 

  32. Matsuda T, Bebenek K, Masutani C, Rogozin IB, Hanaoka F, Kunkel TA. Error rate and specificity of human and murine DNA polymerase eta. J Mol Biol. 2001;312:335–46.

    Article  PubMed  CAS  Google Scholar 

  33. Rada C, Di Noia JM, Neuberger MS. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell. 2004;16:163–71.

    Article  PubMed  CAS  Google Scholar 

  34. Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol. 2002;12:1748–55.

    Article  PubMed  CAS  Google Scholar 

  35. Jansen JG, Langerak P, Tsaalbi-Shtylik A, van den Berk P, Jacobs H, de Wind N. Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice. J Exp Med. 2006;203:319–23.

    Article  PubMed  Google Scholar 

  36. Ross AL, Sale JE. The catalytic activity of REV1 is employed during immunoglobulin gene diversification in DT40. Mol Immunol. 2006;43:1587–94.

    Article  PubMed  CAS  Google Scholar 

  37. Simpson LJ, Sale JE. Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J. 2003;22:1654–64.

    Article  PubMed  CAS  Google Scholar 

  38. Xue K, Rada C, Neuberger MS. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2−/− ung−/− mice. J Exp Med. 2006;203:2085–94.

    Article  PubMed  CAS  Google Scholar 

  39. Maul RW, Gearhart PJ. AID and somatic hypermutation. Adv Immunol. 2010;105:159–91.

    Article  PubMed  CAS  Google Scholar 

  40. Milstein C, Neuberger MS, Staden R. Both DNA strands of antibody genes are hypermutation targets. Proc Natl Acad Sci USA. 1998;95:8791–4.

    Article  PubMed  CAS  Google Scholar 

  41. Guikema JE, Linehan EK, Tsuchimoto D, Nakabeppu Y, Strauss PR, Stavnezer J, et al. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J Exp Med. 2007;204:3017–26.

    Article  PubMed  CAS  Google Scholar 

  42. Schrader CE, Guikema JE, Wu X, Stavnezer J. The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch. Philos Trans R Soc Lond B Biol Sci. 2009;364:645–52.

    Article  PubMed  CAS  Google Scholar 

  43. Eccleston J, Schrader CE, Yuan K, Stavnezer J, Selsing E. Class switch recombination efficiency and junction microhomology patterns in Msh2-, Mlh1-, and Exo1-deficient mice depend on the presence of mu switch region tandem repeats. J Immunol. 2009;183:1222–8.

    Article  PubMed  CAS  Google Scholar 

  44. Stavnezer J, Schrader CE. Mismatch repair converts AID-instigated nicks to double-strand breaks for antibody class-switch recombination. Trends Genet. 2006;22:23–8.

    Article  PubMed  CAS  Google Scholar 

  45. Sabouri Z, Okazaki IM, Shinkura R, Begum N, Nagaoka H, Tsuchimoto D, et al. Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes. Int Immunol. 2009;21:947–55.

    Article  PubMed  CAS  Google Scholar 

  46. Dinkelmann M, Spehalski E, Stoneham T, Buis J, Wu Y, Sekiguchi JM, et al. Multiple functions of MRN in end-joining pathways during isotype class switching. Nat Struct Mol Biol. 2009;16:808–13.

    Article  PubMed  CAS  Google Scholar 

  47. Larson ED, Cummings WJ, Bednarski DW, Maizels N. MRE11/RAD50 cleaves DNA in the AID/UNG-dependent pathway of immunoglobulin gene diversification. Mol Cell. 2005;20:367–75.

    Article  PubMed  CAS  Google Scholar 

  48. Rass E, Grabarz A, Plo I, Gautier J, Bertrand P, Lopez BS. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat Struct Mol Biol. 2009;16:819–24.

    Article  PubMed  CAS  Google Scholar 

  49. Zha S, Boboila C, Alt FW. Mre11: roles in DNA repair beyond homologous recombination. Nat Struct Mol Biol. 2009;16:798–800.

    Article  PubMed  CAS  Google Scholar 

  50. Chaudhuri J, Alt FW. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol. 2004;4:541–52.

    Article  PubMed  CAS  Google Scholar 

  51. Tian M, Alt FW. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem. 2000;275:24163–72.

    Article  PubMed  CAS  Google Scholar 

  52. Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol. 2003;4:442–51.

    Article  PubMed  CAS  Google Scholar 

  53. Khamlichi AA, Glaudet F, Oruc Z, Denis V, Le Bert M, Cogne M. Immunoglobulin class-switch recombination in mice devoid of any S mu tandem repeat. Blood. 2004;103:3828–36.

    Article  PubMed  CAS  Google Scholar 

  54. Luby TM, Schrader CE, Stavnezer J, Selsing E. The mu switch region tandem repeats are important, but not required, for antibody class switch recombination. J Exp Med. 2001;193:159–68.

    Article  PubMed  CAS  Google Scholar 

  55. Shinkura R, Tian M, Smith M, Chua K, Fujiwara Y, Alt FW. The influence of transcriptional orientation on endogenous switch region function. Nat Immunol. 2003;4:435–41.

    Article  PubMed  CAS  Google Scholar 

  56. Zarrin AA, Tian M, Wang J, Borjeson T, Alt FW. Influence of switch region length on immunoglobulin class switch recombination. Proc Natl Acad Sci USA. 2005;102:2466–70.

    Article  PubMed  CAS  Google Scholar 

  57. Zarrin AA, Alt FW, Chaudhuri J, Stokes N, Kaushal D, Du Pasquier L, et al. An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nat Immunol. 2004;5:1275–81.

    Article  PubMed  CAS  Google Scholar 

  58. Han L, Masani S, Yu K. Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination. Proc Natl Acad Sci USA. 2011;108:11584–9.

    Article  PubMed  CAS  Google Scholar 

  59. Daniel JA, Santos MA, Wang Z, Zang C, Schwab KR, Jankovic M, et al. PTIP promotes chromatin changes critical for immunoglobulin class switch recombination. Science. 2010;329:917–23.

    Article  PubMed  CAS  Google Scholar 

  60. Jeevan-Raj BP, Robert I, Heyer V, Page A, Wang JH, Cammas F, et al. Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J Exp Med. 2011;208:1649–60.

    Article  PubMed  CAS  Google Scholar 

  61. Stanlie A, Aida M, Muramatsu M, Honjo T, Begum NA. Histone3 lysine4 trimethylation regulated by the facilitates chromatin transcription complex is critical for DNA cleavage in class switch recombination. Proc Natl Acad Sci USA. 2010;107:22190–5.

    Article  PubMed  CAS  Google Scholar 

  62. Wang L, Wuerffel R, Feldman S, Khamlichi AA, Kenter AL. S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination. J Exp Med. 2009;206:1817–30.

    Article  PubMed  CAS  Google Scholar 

  63. Reinberg D, Sims RJ 3rd. de FACTo nucleosome dynamics. J Biol Chem. 2006;281:23297–301.

    Article  PubMed  CAS  Google Scholar 

  64. Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D. FACT facilitates transcription-dependent nucleosome alteration. Science. 2003;301:1090–3.

    Article  PubMed  CAS  Google Scholar 

  65. Rajagopal D, Maul RW, Ghosh A, Chakraborty T, Khamlichi AA, Sen R, et al. Immunoglobulin switch mu sequence causes RNA polymerase II accumulation and reduces dA hypermutation. J Exp Med. 2009;206:1237–44.

    Article  PubMed  CAS  Google Scholar 

  66. Basu U, Chaudhuri J, Alpert C, Dutt S, Ranganath S, Li G, et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature. 2005;438:508–11.

    Article  PubMed  CAS  Google Scholar 

  67. Chaudhuri J, Khuong C, Alt FW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature. 2004;430:992–8.

    Article  PubMed  CAS  Google Scholar 

  68. Cheng HL, Vuong BQ, Basu U, Franklin A, Schwer B, Astarita J, et al. Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc Natl Acad Sci USA. 2009;106:2717–22.

    Article  PubMed  CAS  Google Scholar 

  69. Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C, et al. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell. 2010;143:122–33.

    Article  PubMed  CAS  Google Scholar 

  70. Nowak U, Matthews AJ, Zheng S, Chaudhuri J. The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA. Nat Immunol. 2011;12:160–6.

    Article  PubMed  CAS  Google Scholar 

  71. Xu Z, Fulop Z, Wu G, Pone EJ, Zhang J, Mai T, et al. 14–3–3 adaptor proteins recruit AID to 5′-AGCT-3′-rich switch regions for class switch recombination. Nat Struct Mol Biol. 2010;17:1124–35.

    Article  PubMed  CAS  Google Scholar 

  72. Basu U, Meng FL, Keim C, Grinstein V, Pefanis E, Eccleston J, et al. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell. 2011;144:353–63.

    Article  PubMed  CAS  Google Scholar 

  73. Yamane A, Resch W, Kuo N, Kuchen S, Li Z, Sun HW, et al. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol. 2011;12:62–9.

    Article  PubMed  CAS  Google Scholar 

  74. Faili A, Aoufouchi S, Gueranger Q, Zober C, Leon A, Bertocci B, et al. AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nat Immunol. 2002;3:815–21.

    Article  PubMed  CAS  Google Scholar 

  75. Martin A, Bardwell PD, Woo CJ, Fan M, Shulman MJ, Scharff MD. Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature. 2002;415:802–6.

    Article  PubMed  CAS  Google Scholar 

  76. Sale JE, Neuberger MS. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity. 1998;9:859–69.

    Article  PubMed  CAS  Google Scholar 

  77. Wabl MR, Beck-Engeser GB, Burrows PD. Allelic inclusion in the pre-B-cell line 18–81. Proc Natl Acad Sci USA. 1984;81:867–70.

    Article  PubMed  CAS  Google Scholar 

  78. Jacobs H, Bross L. Towards an understanding of somatic hypermutation. Curr Opin Immunol. 2001;13:208–18.

    Article  PubMed  CAS  Google Scholar 

  79. Odegard VH, Schatz DG. Targeting of somatic hypermutation. Nat Rev Immunol. 2006;6:573–83.

    Article  PubMed  CAS  Google Scholar 

  80. Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH, et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature. 2008;451:841–5.

    Article  PubMed  CAS  Google Scholar 

  81. Pasqualucci L, Migliazza A, Fracchiolla N, William C, Neri A, Baldini L, et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci USA. 1998;95:11816–21.

    Article  PubMed  CAS  Google Scholar 

  82. Shen HM, Peters A, Baron B, Zhu X, Storb U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science. 1998;280:1750–2.

    Article  PubMed  CAS  Google Scholar 

  83. Peng HZ, Du MQ, Koulis A, Aiello A, Dogan A, Pan LX, et al. Nonimmunoglobulin gene hypermutation in germinal center B cells. Blood. 1999;93:2167–72.

    PubMed  CAS  Google Scholar 

  84. Storb U, Shen HM, Michael N, Kim N. Somatic hypermutation of immunoglobulin and non-immunoglobulin genes. Philos Trans R Soc Lond B Biol Sci. 2001;356:13–9.

    Article  PubMed  CAS  Google Scholar 

  85. Gordon MS, Kanegai CM, Doerr JR, Wall R. Somatic hypermutation of the B cell receptor genes B29 (Igbeta, CD79b) and mb1 (Igalpha, CD79a). Proc Natl Acad Sci USA. 2003;100:4126–31.

    Article  PubMed  CAS  Google Scholar 

  86. Rogozin IB, Kolchanov NA. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta. 1992;1171:11–8.

    Article  PubMed  CAS  Google Scholar 

  87. Rogozin IB, Pavlov YI, Bebenek K, Matsuda T, Kunkel TA. Somatic mutation hotspots correlate with DNA polymerase eta error spectrum. Nat Immunol. 2001;2:530–6.

    Article  PubMed  CAS  Google Scholar 

  88. Klotz EL, Hackett J Jr, Storb U. Somatic hypermutation of an artificial test substrate within an Ig kappa transgene. J Immunol. 1998;161:782–90.

    PubMed  CAS  Google Scholar 

  89. Storb U, Klotz EL, Hackett J Jr, Kage K, Bozek G, Martin TE. A hypermutable insert in an immunoglobulin transgene contains hotspots of somatic mutation and sequences predicting highly stable structures in the RNA transcript. J Exp Med. 1998;188:689–98.

    Article  PubMed  CAS  Google Scholar 

  90. Michael N, Martin TE, Nicolae D, Kim N, Padjen K, Zhan P, et al. Effects of sequence and structure on the hypermutability of immunoglobulin genes. Immunity. 2002;16:123–34.

    Article  PubMed  CAS  Google Scholar 

  91. Yelamos J, Klix N, Goyenechea B, Lozano F, Chui YL, Gonzalez Fernandez A, et al. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature. 1995;376:225–9.

    Article  PubMed  CAS  Google Scholar 

  92. Jolly CJ, Neuberger MS. Somatic hypermutation of immunoglobulin kappa transgenes: association of mutability with demethylation. Immunol Cell Biol. 2001;79:18–22.

    Article  PubMed  CAS  Google Scholar 

  93. Fukita Y, Jacobs H, Rajewsky K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity. 1998;9:105–14.

    Article  PubMed  CAS  Google Scholar 

  94. Betz AG, Milstein C, Gonzalez-Fernandez A, Pannell R, Larson T, Neuberger MS. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell. 1994;77:239–48.

    Article  PubMed  CAS  Google Scholar 

  95. Shen HM, Peters A, Kao D, Storb U. The 3′ Igkappa enhancer contains RNA polymerase II promoters: implications for endogenous and transgenic kappa gene expression. Int Immunol. 2001;13:665–74.

    Article  PubMed  CAS  Google Scholar 

  96. Yang SY, Fugmann SD, Schatz DG. Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences. J Exp Med. 2006;203:2919–28.

    Article  PubMed  CAS  Google Scholar 

  97. Inlay MA, Gao HH, Odegard VH, Lin T, Schatz DG, Xu Y. Roles of the Ig kappa light chain intronic and 3′ enhancers in Igk somatic hypermutation. J Immunol. 2006;177:1146–51.

    PubMed  CAS  Google Scholar 

  98. Perlot T, Alt FW, Bassing CH, Suh H, Pinaud E. Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci USA. 2005;102:14362–7.

    Article  PubMed  CAS  Google Scholar 

  99. Blagodatski A, Batrak V, Schmidl S, Schoetz U, Caldwell RB, Arakawa H, et al. A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet. 2009;5:e1000332.

    Article  PubMed  CAS  Google Scholar 

  100. Kothapalli N, Norton DD, Fugmann SD. Cutting edge: a cis-acting DNA element targets AID-mediated sequence diversification to the chicken Ig light chain gene locus. J Immunol. 2008;180:2019–23.

    PubMed  CAS  Google Scholar 

  101. Michael N, Shen HM, Longerich S, Kim N, Longacre A, Storb U. The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription. Immunity. 2003;19:235–42.

    Article  PubMed  CAS  Google Scholar 

  102. Tanaka A, Shen HM, Ratnam S, Kodgire P, Storb U. Attracting AID to targets of somatic hypermutation. J Exp Med. 2010;207:405–15.

    Article  PubMed  CAS  Google Scholar 

  103. Schoetz U, Cervelli M, Wang YD, Fiedler P, Buerstedde JM. E2A expression stimulates Ig hypermutation. J Immunol. 2006;177:395–400.

    PubMed  CAS  Google Scholar 

  104. Maeda K, Singh SK, Eda K, Kitabatake M, Pham P, Goodman MF, et al. GANP-mediated recruitment of activation-induced cytidine deaminase to cell nuclei and to immunoglobulin variable region DNA. J Biol Chem. 2010;285:23945–53.

    Article  PubMed  CAS  Google Scholar 

  105. Sakaguchi N, Maeda K, Kuwahara K. Molecular mechanism of immunoglobulin V-region diversification regulated by transcription and RNA metabolism in antigen-driven B cells. Scand J Immunol. 2011;73:520–6.

    Article  PubMed  CAS  Google Scholar 

  106. Kuwahara K, Fujimura S, Takahashi Y, Nakagata N, Takemori T, Aizawa S, et al. Germinal center-associated nuclear protein contributes to affinity maturation of B cell antigen receptor in T cell-dependent responses. Proc Natl Acad Sci USA. 2004;101:1010–5.

    Article  PubMed  CAS  Google Scholar 

  107. Kuwahara K, Yoshida M, Kondo E, Sakata A, Watanabe Y, Abe E, et al. A novel nuclear phosphoprotein, GANP, is up-regulated in centrocytes of the germinal center and associated with MCM3, a protein essential for DNA replication. Blood. 2000;95:2321–8.

    PubMed  CAS  Google Scholar 

  108. Liu M, Schatz DG. Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. 2009;30:173–81.

    Article  PubMed  CAS  Google Scholar 

  109. Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA, et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell. 2003;114:371–83.

    Article  PubMed  CAS  Google Scholar 

  110. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    Article  PubMed  CAS  Google Scholar 

  111. Bassing CH, Alt FW. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle. 2004;3:149–53.

    Article  PubMed  CAS  Google Scholar 

  112. Franco S, Alt FW, Manis JP. Pathways that suppress programmed DNA breaks from progressing to chromosomal breaks and translocations. DNA Repair (Amst). 2006;5:1030–41.

    Article  CAS  Google Scholar 

  113. Franco S, Gostissa M, Zha S, Lombard DB, Murphy MM, Zarrin AA, et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol Cell. 2006;21:201–14.

    Article  PubMed  CAS  Google Scholar 

  114. Ramiro AR, Jankovic M, Callen E, Difilippantonio S, Chen HT, McBride KM, et al. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature. 2006;440:105–9.

    Article  PubMed  CAS  Google Scholar 

  115. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

    Article  PubMed  CAS  Google Scholar 

  116. Lieber MR, Gu J, Lu H, Shimazaki N, Tsai AG. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell Biochem. 2010;50:279–96.

    Article  PubMed  CAS  Google Scholar 

  117. Rooney S, Chaudhuri J, Alt FW. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev. 2004;200:115–31.

    Article  PubMed  CAS  Google Scholar 

  118. Roth DB. Restraining the V(D)J recombinase. Nat Rev Immunol. 2003;3:656–66.

    Article  PubMed  CAS  Google Scholar 

  119. Yan CT, Boboila C, Souza EK, Franco S, Hickernell TR, Murphy M, et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature. 2007;449:478–82.

    Article  PubMed  CAS  Google Scholar 

  120. Wang JH, Gostissa M, Yan CT, Goff P, Hickernell T, Hansen E, et al. Mechanisms promoting translocations in editing and switching peripheral B cells. Nature. 2009;460:231–6.

    Article  PubMed  CAS  Google Scholar 

  121. Boboila C, Yan C, Wesemann DR, Jankovic M, Wang JH, Manis J, et al. Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4. J Exp Med. 2010;207:417–27.

    Article  PubMed  CAS  Google Scholar 

  122. Boboila C, Jankovic M, Yan CT, Wang JH, Wesemann DR, Zhang T, et al. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci USA. 2010;107:3034–9.

    Article  PubMed  CAS  Google Scholar 

  123. Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J, et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell. 2002;109:811–21.

    Article  PubMed  CAS  Google Scholar 

  124. Wang JH, Alt FW, Gostissa M, Datta A, Murphy M, Alimzhanov MB, et al. Oncogenic transformation in the absence of XRCC4 targets peripheral B cells that have undergone editing and switching. J Exp Med. 2008;205:3079–90.

    Article  PubMed  CAS  Google Scholar 

  125. McVey M, Lee SE. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 2008;24:529–38.

    Article  PubMed  CAS  Google Scholar 

  126. Deriano L, Stracker TH, Baker A, Petrini JH, Roth DB. Roles for NBS1 in alternative nonhomologous end-joining of V(D)J recombination intermediates. Mol Cell. 2009;34:13–25.

    Article  PubMed  CAS  Google Scholar 

  127. Xie A, Kwok A, Scully R. Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat Struct Mol Biol. 2009;16:814–8.

    Article  PubMed  CAS  Google Scholar 

  128. Lee-Theilen M, Matthews AJ, Kelly D, Zheng S, Chaudhuri J. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat Struct Mol Biol. 2011;18:75–9.

    Article  PubMed  CAS  Google Scholar 

  129. Zhang Y, Jasin M. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol. 2011;18:80–4.

    Article  PubMed  CAS  Google Scholar 

  130. Della-Maria J, Zhou Y, Tsai MS, Kuhnlein J, Carney JP, Paull TT, et al. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. J Biol Chem. 2011;286:33845–53.

    Article  PubMed  CAS  Google Scholar 

  131. Saribasak H, Maul RW, Cao Z, McClure RL, Yang W, McNeill DR, et al. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes. J Exp Med. 2011;208:2209–16.

    Article  PubMed  CAS  Google Scholar 

  132. Simsek D, Brunet E, Wong SY, Katyal S, Gao Y, McKinnon PJ, et al. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet. 2011;7:e1002080.

    Article  PubMed  CAS  Google Scholar 

  133. Stavnezer J, Bjorkman A, Du L, Cagigi A, Pan-Hammarstrom Q. Mapping of switch recombination junctions, a tool for studying DNA repair pathways during immunoglobulin class switching. Adv Immunol. 2010;108:45–109.

    Article  PubMed  CAS  Google Scholar 

  134. Caldecott KW. XRCC1 and DNA strand break repair. DNA Repair (Amst). 2003;2:955–69.

    Article  CAS  Google Scholar 

  135. Boboila C, Oksenych V, Gostissa M, Wang JH, Zha S, Zhang Y, et al. Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1). Proc Natl Acad Sci USA. 2012;109:2473–8.

    Article  PubMed  CAS  Google Scholar 

  136. Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5:251–62.

    Article  PubMed  CAS  Google Scholar 

  137. Kuppers R, Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene. 2001;20:5580–94.

    Article  PubMed  CAS  Google Scholar 

  138. Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S, Muramatsu M, et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell. 2004;118:431–8.

    Article  PubMed  CAS  Google Scholar 

  139. Ohno H. Pathogenetic and clinical implications of non-immunoglobulin; BCL6 translocations in B-cell non-Hodgkin’s lymphoma. J Clin Exp Hematop. 2006;46:43–53.

    Article  PubMed  Google Scholar 

  140. Bertrand P, Bastard C, Maingonnat C, Jardin F, Maisonneuve C, Courel MN, et al. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas. Leukemia. 2007;21:515–23.

    Article  PubMed  CAS  Google Scholar 

  141. Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell. 2008;135:1028–38.

    Article  PubMed  CAS  Google Scholar 

  142. Robbiani DF, Bunting S, Feldhahn N, Bothmer A, Camps J, Deroubaix S, et al. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell. 2009;36:631–41.

    Article  PubMed  CAS  Google Scholar 

  143. Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho YJ, et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 2011;147:107–19.

    Article  PubMed  CAS  Google Scholar 

  144. Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A, Nakahashi H, et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell. 2011;147:95–106.

    Article  PubMed  CAS  Google Scholar 

  145. Staszewski O, Baker RE, Ucher AJ, Martier R, Stavnezer J, Guikema JE. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol Cell. 2011;41:232–42.

    Article  PubMed  CAS  Google Scholar 

  146. Gourzi P, Leonova T, Papavasiliou FN. A role for activation-induced cytidine deaminase in the host response against a transforming retrovirus. Immunity. 2006;24:779–86.

    Article  PubMed  CAS  Google Scholar 

  147. Szczylik C, Skorski T, Nicolaides NC, Manzella L, Malaguarnera L, Venturelli D, et al. Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science. 1991;253:562–5.

    Article  PubMed  CAS  Google Scholar 

  148. Van Etten RA, Jackson P, Baltimore D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell. 1989;58:669–78.

    Article  PubMed  Google Scholar 

  149. Barila D, Superti-Furga G. An intramolecular SH3-domain interaction regulates c-Abl activity. Nat Genet. 1998;18:280–2.

    Article  PubMed  CAS  Google Scholar 

  150. Franz WM, Berger P, Wang JY. Deletion of an N-terminal regulatory domain of the c-abl tyrosine kinase activates its oncogenic potential. EMBO J. 1989;8:137–47.

    PubMed  CAS  Google Scholar 

  151. Jackson P, Baltimore D. N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl. EMBO J. 1989;8:449–56.

    PubMed  CAS  Google Scholar 

  152. Mayer BJ, Baltimore D. Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase. Mol Cell Biol. 1994;14:2883–94.

    PubMed  CAS  Google Scholar 

  153. Pendergast AM, Muller AJ, Havlik MH, Clark R, McCormick F, Witte ON. Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor. Proc Natl Acad Sci USA. 1991;88:5927–31.

    Article  PubMed  CAS  Google Scholar 

  154. Quintas-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009;113:1619–30.

    Article  PubMed  CAS  Google Scholar 

  155. Feldhahn N, Henke N, Melchior K, Duy C, Soh BN, Klein F, et al. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. J Exp Med. 2007;204:1157–66.

    Article  PubMed  CAS  Google Scholar 

  156. Klemm L, Duy C, Iacobucci I, Kuchen S, von Levetzow G, Feldhahn N, et al. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell. 2009;16:232–45.

    Article  PubMed  CAS  Google Scholar 

  157. Gruber TA, Chang MS, Sposto R, Muschen M. Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven B-cell lineage acute lymphoblastic leukemia. Cancer Res. 2010;70:7411–20.

    Article  PubMed  CAS  Google Scholar 

  158. Yoshikawa K, Okazaki IM, Eto T, Kinoshita K, Muramatsu M, Nagaoka H, et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science. 2002;296:2033–6.

    Article  PubMed  CAS  Google Scholar 

  159. Okazaki IM, Hiai H, Kakazu N, Yamada S, Muramatsu M, Kinoshita K, et al. Constitutive expression of AID leads to tumorigenesis. J Exp Med. 2003;197:1173–81.

    Article  PubMed  CAS  Google Scholar 

  160. Morris DS, Tomlins SA, Montie JE, Chinnaiyan AM. The discovery and application of gene fusions in prostate cancer. BJU Int. 2008;102:276–82.

    Article  PubMed  CAS  Google Scholar 

  161. Mano H. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci. 2008;99:2349–55.

    Article  PubMed  CAS  Google Scholar 

  162. Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 2009;139:1069–83.

    Article  PubMed  CAS  Google Scholar 

  163. Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, Morisawa T, et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med. 2007;13:470–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Drs. Zhangguo Chen, Shan Zha, and Ming Tian for comments. I apologize to those whose work was not cited due to length restrictions. This work was supported by a University of Colorado School of Medicine start-up fund, Leukemia Research Foundation, and Boettcher Foundation (to J.H.W.) J.H.W. is a recipient of Boettcher Foundation Webb-Waring Biomedical Research Award. The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing H. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.H. The role of activation-induced deaminase in antibody diversification and genomic instability. Immunol Res 55, 287–297 (2013). https://doi.org/10.1007/s12026-012-8369-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8369-4

Keywords

Navigation