Skip to main content

Advertisement

Log in

Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Severe combined immunodeficiency (SCID) is a syndrome of diverse genetic cause characterized by profound deficiencies of T- and B-cell function and, in some types, also of NK cells and function. Mutations in thirteen different genes have been found to cause this condition, which is uniformly fatal in the first 2 years of life unless immune reconstitution can be accomplished. In the 42 years since the first bone marrow transplant was given in 1968, the standard treatment for all forms of SCID has been allogeneic bone marrow transplantation. Both HLA-identical unfractionated and T-cell-depleted HLA-haploidentical bone marrow transplants have been very successful in effecting immune reconstitution, especially if performed in the first 3.5 months of life and without pre-transplant chemotherapy. This paper summarizes the longterm outcome, according to molecular type, of 166 consecutive SCID infants given non-conditioned related donor bone marrow transplants at this institution over the past 28.3 years and reviews published reports of longterm outcomes of transplants in SCID performed at other centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Glanzmann E, Riniker P. Essentielle lymphocytophtose. Ein neues krankeitsbild aus der Sauglingspathologie. Ann Paediat. 1950;174:1–5.

    Google Scholar 

  2. Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ, et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science. 1995;270:797–800.

    Article  PubMed  CAS  Google Scholar 

  3. Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20(4):394–7.

    Article  PubMed  CAS  Google Scholar 

  4. Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, et al. RAG mutations in human B cell-negative SCID. Science. 1996;274:97–9.

    Article  PubMed  CAS  Google Scholar 

  5. Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell. 2001;105(2):177–86.

    Article  PubMed  CAS  Google Scholar 

  6. Kung C, Pingel JT, Heikinheimo M, Klemola T, Varkila K, Yoo LI, et al. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat Med. 2000;6(3):343–5.

    Article  PubMed  CAS  Google Scholar 

  7. Buck D, Moshous D, de Chasseval R, Ma Y, Le Deist F, Cavazzana-Calvo M, et al. Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV. Eur J Immunol. 2006;36(1):224–35.

    Article  PubMed  CAS  Google Scholar 

  8. van der Burg M, Ijspeert H, Verkaik NS, Turul T, Wiegant WW, Morotomi-Yano K, et al. A DNA-PKcs mutation in a radiosensitive T-B-SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Invest. 2009;119(1):91–8.

    PubMed  Google Scholar 

  9. Dadi HK, Simon AJ, Roifman CM. Effect of CD3delta deficiency on maturation of alpha/beta and gamma/delta T-cell lineages in severe combined immunodeficiency. N Engl J Med. 2003;349(19):1821–8.

    Article  PubMed  CAS  Google Scholar 

  10. de Saint Basile G, Geissmann F, Flori E, Uring-Lambert B, Soudais C, Cavazzana-Calvo M, et al. Severe combined immunodeficiency caused by deficiency in either the delta or the epsilon subunit of CD3. J Clin Invest. 2004;114(10):1512–7.

    PubMed  Google Scholar 

  11. Roberts JL, Lauritsen JHP, Cooney M, Parrott RE, Sajaroff EO, Win CM, et al. T-B+NK+severe combined immunodeficiency caused by complete deficiency of the CD3 zeta subunit of the T cell antigen receptor complex. Blood. 2007;109:3198–206.

    Article  PubMed  CAS  Google Scholar 

  12. Amos DB, Bach FH. Phenotypic expressions of the major histocompatibility locus in man (HL-A): leukocyte antigens and mixed leukocyte culture reactivity. J Exp Med. 1968;128:623–37.

    Article  PubMed  CAS  Google Scholar 

  13. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet. 1968;2:1366–9.

    Article  PubMed  CAS  Google Scholar 

  14. Bortin MM, Rimm AA. Severe combined immunodeficiency disease. Characterization of the disease and results of transplantation. JAMA. 1977;238:591–600.

    Article  PubMed  CAS  Google Scholar 

  15. Muller-Ruchholtz W, Wottge HU, Muller-Hermelink HK. Bone marrow transplantation in rats across strong histocompatibility barriers by selective elimination of lymphoid cells in donor marrow. Transpl Proc. 1976;8:537–41.

    CAS  Google Scholar 

  16. Reisner Y, Itzicovitch L, Meshorer A, Sharon N. Hematopoietic stem cell transplantation using mouse bone marrow and spleen cells fractionated by lectins. Proc Nat Acad Sci USA. 1978;75:2933–6.

    Article  PubMed  CAS  Google Scholar 

  17. Reisner Y, Kapoor N, Kirkpatrick D, Pollack MS, Cunningham-Rundles S, Dupont B, et al. Transplantation for severe combined immunodeficiency with HLA-A, B, D, DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood. 1983;61:341–8.

    PubMed  CAS  Google Scholar 

  18. Friedrich W, Goldmann SF, Ebell W, Blutters-Sawatzki R, Gaedecke G, Raghavachar A, et al. Severe combined immunodeficiency: treatment by bone marrow transplantation in 15 infants using HLA-haploidentical donors. Eur J Pediatr. 1985;144:125–30.

    Article  PubMed  CAS  Google Scholar 

  19. Buckley RH, Schiff SE, Sampson HA, Schiff RI, Markert ML, Knutsen AP, et al. Development of immunity in human severe primary T cell deficiency following haploidentical bone marrow stem cell transplantation. J Immunol. 1986;136:2398–407.

    PubMed  CAS  Google Scholar 

  20. O’Reilly RJ, Brochstein J, Collins N, Keever C, Kapoor N, Kirkpatrick D, et al. Evaluation of HLA-haplotype disparate parental marrow grafts depleted of T lymphocytes by differential agglutination with a soybean lectin and E rosette depletion for the treatment of severe combined immunodeficiency. Vox Sang. 1986;51:81–6.

    Article  PubMed  Google Scholar 

  21. Moen RC, Horowitz SD, Sondel PM, Borcherding WR, Trigg ME, Billing R, et al. Immunologic reconstitution after haploidentical bone marrow transplantation for immune deficiency disorders: treatment of bone marrow cells with monoclonal antibody CT-2 and complement. Blood. 1987;70:664–9.

    PubMed  CAS  Google Scholar 

  22. O’Reilly RJ, Keever CA, Small TN, Brochstein J. The use of HLA-non-identical T-cell-depleted marrow transplants for correction of severe combined immunodeficiency disease. Immunodefic Rev. 1989;1(4):273–309.

    PubMed  Google Scholar 

  23. Wijnaendts L, LeDeist F, Griscelli C, Fischer A. Development of immunologic functions after bone marrow transplantation in 33 patients with severe combined immunodeficiency. Blood. 1989;74:2212–9.

    PubMed  CAS  Google Scholar 

  24. Fischer A, Landais P, Friedrich W, Morgan G, Gerritsen B, Fasth A, et al. European experience of bone marrow transplantation for severe combined immunodeficiency. Lancet. 1990;336:850–4.

    Article  PubMed  CAS  Google Scholar 

  25. Dror Y, Gallagher R, Wara DW, Colombe BW, Merino A, Benkerrou M, et al. Immune reconstitution in severe combined immunodeficiency disease after lectin-treated, T cell depleted haplocompatible bone marrow transplantation. Blood. 1993;81:2021–30.

    PubMed  CAS  Google Scholar 

  26. Stephan JL, Vlekova V, Le Deist F, Blanche S, Donadieu J, de Saint-Basile G, et al. Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 cases. J Pediatr. 1993;123:564–72.

    Article  PubMed  CAS  Google Scholar 

  27. Giri N, Vowels M, Ziegler JB, Ford D, Lam-Po-Tang R. HLA non-identical T-cell-depleted bone marrow transplantation for primary immunodeficiency diseases. Aust N Z J Med. 1994;24(1):26–30.

    PubMed  CAS  Google Scholar 

  28. Buckley RH. Bone marrow transplantation in primary immunodeficiency. In: Rich RR, editor. Clinical immunology: principles and practice. St. Louis: C.V. Mosby; 1995. p. 1813–30.

    Google Scholar 

  29. Buckley RH, Schiff SE, Schiff RI, Markert L, Williams LW, Roberts JL, et al. Hematopoietic stem cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 1999;340:508–16.

    Article  PubMed  CAS  Google Scholar 

  30. Myers LA, Patel DD, Puck JM, Buckley RH. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood. 2002;99(3):872–8.

    Article  PubMed  CAS  Google Scholar 

  31. Antoine C, Muller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet. 2003;361:553–60.

    Article  PubMed  Google Scholar 

  32. Buckley RH. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Ann Rev Immunol. 2004;55:625–56.

    Article  Google Scholar 

  33. Gennery AR, Slatter MA, Grandin L, Taupin P, Cant AJ, Veys P, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126(3):602–10.

    Article  PubMed  Google Scholar 

  34. Schiff SE, Kurtzberg J, Buckley RH. Studies of human bone marrow treated with soybean lectin and sheep erythrocytes: stepwise analysis of cell morphology, phenotype and function. Clin Exp Immunol. 1987;68:685–93.

    PubMed  CAS  Google Scholar 

  35. Sarzotti-Kelsoe M, Win CM, Parrott RE, Cooney M, Moser BK, Roberts JL, et al. Thymic output, T-cell diversity, and T-cell function in long-term human SCID chimeras. Blood. 2009;114(7):1445–53.

    Article  PubMed  CAS  Google Scholar 

  36. Railey MD, LoKhnygina Y, Buckley RH. Long term clinical outcome of patients with severe combined immunodeficiency who received related donor bone marrow transplants without pre-transplant chemotherapy or post-transplant GVHD prophylaxis. J Pediatr. 2009;155:834–40.

    Article  PubMed  Google Scholar 

  37. Notarangelo LD, Fischer A, Geha RS, Casanova JL, Chapel H, Conley ME, et al. Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol. 2009;124(6):1161–78.

    Article  PubMed  CAS  Google Scholar 

  38. Buckley RH, Schiff RI, Schiff SE, Markert ML, Williams LW, Harville TO, et al. Human severe combined immunodeficiency (SCID): genetic, phenotypic and functional diversity in 108 infants. J Pediatr. 1997;130:378–87.

    Article  PubMed  CAS  Google Scholar 

  39. Buckley RH. The multiple causes of human SCID. J Clin Invest. 2004;114(10):1409–11.

    PubMed  CAS  Google Scholar 

  40. Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS, et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell. 1993;73:147–57.

    Article  PubMed  CAS  Google Scholar 

  41. Puck JM, Deschenes SM, Porter JC, Dutra AS, Brown CJ, Willard HF, et al. The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum Mol Genet. 1993;2:1099–104.

    Article  PubMed  CAS  Google Scholar 

  42. Puck JM. Molecular and genetic basis of X-linked immunodeficiency disorders. J Clin Immunol. 1994;14:81–9.

    Article  PubMed  CAS  Google Scholar 

  43. Macchi P, Villa A, Gillani S, Sacco MG, Frattini A, Porta F, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995;377:65–8.

    Article  PubMed  CAS  Google Scholar 

  44. Roberts JL, Lengi A, Brown SM, Chen M, Zhou Y-J, O’Shea JJ, et al. Janus Kinase 3 (JAK3) deficiency: clinical, immunologic and molecular analyses of 10 patients and outcomes of stem cell transplantation. Blood. 2004;103:209–18.

    Article  Google Scholar 

  45. Hirschhorn R. Immunodeficiency diseases due to deficiency of adenosine deaminase. In: Ochs HD, Smith CIE, Puck JM, editors. Primary immunodeficiency diseases: a molecular and genetic approach. New York and Oxford: Oxford University Press; 1999. p. 121–39.

    Google Scholar 

  46. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. Consensus conference on acute GVHD grading. Bone Marrow Transpl. 1995;15:825–8.

    CAS  Google Scholar 

  47. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009;360(5):447–58.

    Article  PubMed  CAS  Google Scholar 

  48. Friedman NJ, Schiff SE, Ward FE, Schiff RI, Buckley RH. Graft-versus-graft and graft-versus-host reactions after HLA-identical bone marrow transplantation in a patient with severe combined immunodeficiency with transplacentally acquired lymphoid chimerism. Pediatr Allerg Immunol. 1991;2:111–6.

    Article  Google Scholar 

  49. Patel DD, Gooding ME, Parrott RE, Curtis KM, Haynes BF, Buckley RH. Thymic function after hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 2000;342(18):1325–32.

    Article  PubMed  CAS  Google Scholar 

  50. Sarzotti M, Patel DD, Li X, Ozaki DA, Cao S, Langdon S, et al. T cell repertoire development in humans with SCID after nonablative allogeneic marrow transplantation. J Immunol. 2003;170(5):2711–8.

    PubMed  CAS  Google Scholar 

  51. Ghory P, Schiff S, Buckley R. Appearance of multiple benign paraproteins during early engraftment of soy lectin T cell-depleted haploidentical bone marrow cells in severe combined immunodeficiency. J Clin Immunol. 1986;6:161–9.

    Article  PubMed  CAS  Google Scholar 

  52. Kent EF, Crawford J, Cohen HJ, Buckley RH. Development of multiple monoclonal serum immunoglobulins (multiclonal gammopathy) following both HLA-identical unfractionated and T cell-depleted haploidentical bone marrow transplantation in severe combined immunodeficiency. J Clin Immunol. 1990;10:106–14.

    Article  PubMed  Google Scholar 

  53. Gerritsen EJA, van Tol MJD, Lankester AC, van der Weijden-Rajas CPM, Jol-van der Zjide CM, Oudeman-Gruber NJ, et al. Immunoglobulin levels and monoclonal gammopathies in children after bone marrow transplantation. Blood. 1993;82:3493–502.

    PubMed  CAS  Google Scholar 

  54. Buckley RH. B cell function in severe combined immunodeficiency after stem cell or gene therapy: A review. J Allergy Clin Immunol 2010; 125: in press.

  55. Haddad E, Landais P, Friedrich W, Gerritsen B, Cavazzana-Calvo M, Morgan G, et al. Long-term immune reconstitution and outcome after HLA-nonidentical T-cell-depleted bone marrow transplantation for severe combined immunodeficiency: a European retrospective study of 116 patients. Blood. 1998;91(10):3646–53.

    PubMed  CAS  Google Scholar 

  56. Bertrand Y, Landais P, Friedrich W, Gerritsen B, Morgan G, Fasth A, et al. Influence of severe combined immunodeficiency phenotype on the outcome of HLA non-identical T cell-depleted bone marrow transplantation. J Pediatr. 1999;134:740–8.

    Article  PubMed  CAS  Google Scholar 

  57. O’Marcaigh AS, DeSantes K, Hu D, Pabst H, Horn B, Li L, et al. Bone marrow transplantation for T-B-severe combined immunodeficiency disease in Athabascan-speaking native Americans. Bone Marrow Transpl. 2001;27(7):703–9.

    Article  Google Scholar 

  58. Smogorzewska EM, Brooks J, Annett G, Kapoor N, Crooks GM, Kohn DB, et al. T cell depleted haploidentical bone marrow transplantation for the treatment of children with severe combined immunodeficiency. Arch Immunol Ther Exp (Warsz). 2000;48(2):111–8.

    CAS  Google Scholar 

  59. Borghans JA, Bredius RG, Hazenberg MD, Roelofs H, Jol-van der Zijde EC, Heidt J, et al. Early determinants of long-term T-cell reconstitution after hematopoietic stem cell transplantation for severe combined immunodeficiency. Blood. 2006;108(2):763–9.

    Article  PubMed  CAS  Google Scholar 

  60. Cavazzana-Calvo M, Carlier F, Le Deist F, Morillon E, Taupin P, Gautier D, et al. Long-term T-cell reconstitution after hematopoietic stem-cell transplantation in primary T-cell-immunodeficient patients is associated with myeloid chimerism and possibly the primary disease phenotype. Blood. 2007;109(10):4575–81.

    Article  PubMed  CAS  Google Scholar 

  61. Mazzolari E, Forino C, Guerci S, Imberti L, Lanfranchi A, Porta F, et al. Long-term immune reconstitution and clinical outcome after stem cell transplantation for severe T-cell immunodeficiency. J Allergy Clin Immunol. 2007;120(4):892–9.

    Article  PubMed  CAS  Google Scholar 

  62. Friedrich W, Honig M, Muller SM. Long-term follow-up in patients with severe combined immunodeficiency treated by bone marrow transplantation. Immunol Res. 2007;38(1–3):165–73.

    Article  PubMed  Google Scholar 

  63. Slatter MA, Brigham K, Dickinson AM, Harvey HL, Barge D, Jackson A, et al. Long-term immune reconstitution after anti-CD52-treated or anti-CD34-treated hematopoietic stem cell transplantation for severe T-lymphocyte immunodeficiency. J Allergy Clin Immunol. 2007;121:361–7.

    Article  PubMed  Google Scholar 

  64. Patel NC, Chinen J, Rosenblatt HM, Hanson IC, Brown BS, Paul ME, et al. Long-term outcomes of nonconditioned patients with severe combined immunodeficiency transplanted with HLA-identical or haploidentical bone marrow depleted of T cells with anti-CD6 mAb. J Allergy Clin Immunol. 2008;122(6):1185–93.

    Article  PubMed  CAS  Google Scholar 

  65. Neven B, Leroy S, Decaluwe H, Le Deist F, Picard C, Moshous D et al. Long-term outcome after haematopoietic stem cell transplantation of a single-centre cohort of 90 patients with severe combined immunodeficiency: long-term outcome of HSCT in SCID. Blood. 2009.

  66. Honig M, Albert MH, Schulz A, Sparber-Sauer M, Schutz C, Belohradsky B, et al. Patients with adenosine deaminase deficiency surviving after hematopoietic stem cell transplantation are at high risk of CNS complications. Blood. 2007;109(8):3595–602.

    Article  PubMed  Google Scholar 

  67. Titman P, Pink E, Skucek E, O’Hanlon K, Cole TJ, Gaspar J, et al. Cognitive and behavioural abnormalities in children following haematopoietic stem cell transplantation for severe congenital immunodeficiencies. Blood. 2008;112:3907–13.

    Article  PubMed  CAS  Google Scholar 

  68. Clement-De Boers A, Oostdijk W, Van Weel-Sipman MH, Van den Broeck J, Wit JM, Vossen JM. Final height and hormonal function after bone marrow transplantation in children. J Pediatr. 1996;129:544–50.

    Article  PubMed  CAS  Google Scholar 

  69. Barrett MJ, Buckley RH, Schiff SE, Kidd PC, Ward FE. Accelerated development of immunity following transplantation of maternal marrow stem cells into infants with severe combined immunodeficiency and transplacentally acquired lymphoid chimerism. Clin Exp Immunol. 1988;72:118–23.

    PubMed  CAS  Google Scholar 

  70. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. New Engl J Med. 1996;335(3):157–66.

    Article  PubMed  CAS  Google Scholar 

  71. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R, et al. Outcome of cord blood transplantation from related and unrelated donors. New Engl J Med. 1997;337:373–81.

    Article  PubMed  CAS  Google Scholar 

  72. Knutsen AP, Wall DA. Umbilical cord blood transplantation in severe T-cell immunodeficiency disorders: two-year experience. J Clin Immunol. 2000;20(6):466–76.

    Article  PubMed  CAS  Google Scholar 

  73. Flake AW, Roncarolo MG, Puck JM, Almeida-Porada G, Evans MI, Johnson MP, et al. Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N Engl J Med. 1996;335:1806–10.

    Article  PubMed  CAS  Google Scholar 

  74. Wengler GS, Lanfranchi A, Frusca T, Verardi R, Neva A, Brugnoni D, et al. In utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDX1). Lancet. 1996;348:1484–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Grants AI042951 and AI47605 from the National Institute of Allergy and Infectious Diseases. The author wishes to thank all of those who have participated in the care and study of the SCID infants over the past 3 decades. In particular, she wants to express her gratitude to the research colleagues who have participated in this work, including Marcella Sarzotti-Kelsoe, Ph.D., Roberta E. Parrott, Sherrie E. Schiff, Chan M. Win, Elisa Sajaroff, Zermeena Marshall, Joseph L. Roberts, M.D./Ph.D, and Myriah Cooney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca H. Buckley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, R.H. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes. Immunol Res 49, 25–43 (2011). https://doi.org/10.1007/s12026-010-8191-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-010-8191-9

Keywords

Navigation