Skip to main content

Advertisement

Log in

Microparticles as a source of extracellular DNA

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Microparticles are small membrane-bound vesicles that display pro-inflammatory and pro-thrombotic activities important in the pathogenesis of a wide variety of diseases. These particles are released from activated and dying cells and incorporate nuclear and cytoplasmic molecules for extracellular export. Of these molecules, DNA is a central autoantigen in systemic lupus erythematosus (SLE). As studies in our laboratory show, DNA occurs prominently in microparticles, translocating into these structures during apoptotic cell death. This DNA is antigenically active and can bind to lupus anti-DNA autoantibodies. These findings suggest that microparticles are an important source of extracellular DNA to serve as an autoantigen and autoadjuvant in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res. 2003;59:277–87.

    Article  PubMed  CAS  Google Scholar 

  2. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19:43–51.

    Article  PubMed  CAS  Google Scholar 

  3. Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol. 2010;61:21–9.

    Article  Google Scholar 

  4. Orozco AF, Lewis DE. Flow cytometric analysis of circulating microparticles in plasma. Cytometry A. 2010;77A:502–14.

    Article  CAS  Google Scholar 

  5. Hahn BH. Antibodies to DNA. N Engl J Med. 1998;338:1359–68.

    Article  PubMed  CAS  Google Scholar 

  6. Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest. 2005;115:407–17.

    PubMed  CAS  Google Scholar 

  7. Rönnblom L, Eloranta M-J, Alm GV. The type I interferon system in systemic lupus erythematosus. Arthritis Rheum. 2006;54:408–20.

    Article  PubMed  Google Scholar 

  8. Tian J, Avalos AM, Mao S-Y, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 2007;8:487–96.

    Article  PubMed  CAS  Google Scholar 

  9. Schulze C, Munoz LE, Franz S, Sarter K, Chaurio RA, Gaipl US, Hermann M. Clearance deficiency—a potential link between infections and autoimmunity. Autoimmun Rev. 2008;8:5–8.

    Article  PubMed  CAS  Google Scholar 

  10. Lafyatis R, Marshak-Rothstein A. Toll-like receptors and innate immune responses in systemic lupus erythematosus. Arthritis Res Ther. 2007;9:222.

    Article  PubMed  Google Scholar 

  11. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994;179:1317–30.

    Article  PubMed  CAS  Google Scholar 

  12. Schiller M, Bekeredjian-Ding I, Heyder P, Blank N, Ho AD, Lorenz HM. Autoantigens are translocated into small apoptotic bodies during early stages of apoptosis. Cell Death Differ. 2008;15:183–91.

    Article  PubMed  CAS  Google Scholar 

  13. Pisetsky DS, Reich CF III. The influence of lipofectin on the in vitro stimulation of murine spleen cells by bacterial DNA and plasmid DNA vectors. J Interferon Cytokine Res. 1999;19:1219–26.

    Article  PubMed  CAS  Google Scholar 

  14. Zhu FG, Reich CF III, Pisetsky DS. Effect of cytofectins on the immune response of murine macrophages to mammalian DNA. Immunology. 2003;109:255–62.

    Article  PubMed  CAS  Google Scholar 

  15. Reich CF III, Pisetsky DS. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis. Exp Cell Res. 2009;315:760–8.

    Article  PubMed  CAS  Google Scholar 

  16. Ullal AJ, Pisetsky DS. The release of Jurkat leukemia T cells treated with staurosporine and related kinase inhibitors to induce apoptosis. Apoptosis. 2010;15:586–96.

    Article  PubMed  CAS  Google Scholar 

  17. Harris HE, Raucci A. Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. EMBO Rep. 2006;7:774–8.

    PubMed  CAS  Google Scholar 

  18. Pisetsky DS, Erlandsson-Harris H, Andersson U. High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther. 2008;10:209.

    Article  PubMed  Google Scholar 

  19. Andersson U, Harris HE. The role of HMGB1 in the pathogenesis of rheumatic disease. Biochim Biophys Acta. 2010;1799:141–8.

    PubMed  CAS  Google Scholar 

  20. Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, Bianchi ME. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22:5551–60.

    Article  PubMed  CAS  Google Scholar 

  21. Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME, Rubartelli A. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002;3:995–1001.

    Article  PubMed  CAS  Google Scholar 

  22. Jiang W, Pisetsky DS. The role of IFN-a and nitric oxide in the release of HMGB1 by RAW264.7 cells stimulated with polyinosinic-polycytidylic acid and lipopolysaccharide. J Immunol. 2006;177:3337–43.

    PubMed  CAS  Google Scholar 

  23. Jiang W, Bell CW, Pisetsky DS. The relationship between apoptosis and high-mobility group protein 1 release from murine macrophages stimulated with lipopolysaccharide or polyinosinic-polycytidylic acid. J Immunol. 2007;178:6495–503.

    PubMed  CAS  Google Scholar 

  24. Gauley J, Pisetsky DS. The release of microparticles by RAW264.7 macrophage cells stimulated with TLR ligands. J Leukoc Biol. 2010;87:1115–23.

    Article  PubMed  CAS  Google Scholar 

  25. Ullal AJ, Pisetsky DS, Reich CF III. Use of SYTO 13, a fluorescent dye binding nucleic acids, for the detection of microparticles in in vitro systems. Cytometry A. 2010;77:294–301.

    PubMed  Google Scholar 

Download references

Acknowledgments

These studies were supported by a VA Merit review grant and NIH grants AI082402 and AI083923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Pisetsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisetsky, D.S., Gauley, J. & Ullal, A.J. Microparticles as a source of extracellular DNA. Immunol Res 49, 227–234 (2011). https://doi.org/10.1007/s12026-010-8184-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-010-8184-8

Keywords

Navigation