Skip to main content
Log in

The release of microparticles by Jurkat leukemia T cells treated with staurosporine and related kinase inhibitors to induce apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Microparticles (MPs) are small membrane-bound vesicles released from cells undergoing activation or cell death. These particles display potent biological activities that can impact on physiologic and pathologic processes. Previous studies with the Jurkat T leukemia cell line demonstrated that staurosporine (STS) induces the release of MPs as cells undergo apoptosis. To investigate further this process, we tested the effects of STS, its analogue, 7-hydroxystaurosporine (UCN-01), and other protein kinase C (PKC) and cyclin-dependent kinase (CDK) inhibitors. FACS analysis was used to assess MP release. Results of these studies indicate that STS and UCN-01 induce MP release by Jurkat cells; in contrast, other PKC and CDK inhibitors failed to induce comparable release, suggesting that release does not result from simple inhibition of either kinase alone. Time course experiments indicated that STS-induced particle release occurred as early as 2 h after treatment, with the early release MPs displaying low levels of binding of annexin V and propidium iodide (PI). Early-release MPs, however, matured in culture to an annexin V- and PI-positive phenotype. Together, these results indicate that STS and UCN-01 induce MPs that are phenotypically distinct and reflect specific patterns of kinase inhibition during apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Distler JH, Pisetsky DS, Huber LC, Kalden JR, Gay S, Distler O (2005) Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum 52:3337–3348

    Article  PubMed  CAS  Google Scholar 

  2. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    Article  PubMed  CAS  Google Scholar 

  3. Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21:157–171

    Article  PubMed  CAS  Google Scholar 

  4. Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA (2005) Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106:1604–1611

    Article  PubMed  CAS  Google Scholar 

  5. Distler JHW, Jungel A, Huber LC et al (2005) The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci USA 102:2892–2897

    Article  PubMed  CAS  Google Scholar 

  6. Chironi G, Simon A, Hugel B et al (2006) Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler Thromb Vasc Biol 26:2775–2780

    Article  PubMed  CAS  Google Scholar 

  7. Kalinkovich A, Tavor S, Avigdor A et al (2006) Functional CXCR4-expressing microparticles and SDF-1 correlate with circulating acute myelogenous leukemia cells. Cancer Res 66:11013–11020

    Article  PubMed  CAS  Google Scholar 

  8. Mesri M, Altieri DC (1998) Endothelial cell activation by leukocyte microparticles. J Immunol 161:4382–4387

    PubMed  CAS  Google Scholar 

  9. Shah MD, Bergeron AL, Dong JF, López JA (2008) Flow cytometric measurement of microparticles: pitfalls and protocol modifications. Platelets 19:365–372

    Article  PubMed  CAS  Google Scholar 

  10. Mostefai HA, Andriantsitohaina R, Martínez MC (2008) Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer. Physiol Res 57:311–320

    PubMed  CAS  Google Scholar 

  11. Pihusch R, Höhnberg B, Salat C, Pihusch M, Hiller E, Kolb H (2002) Platelet flow cytometric findings in patients undergoing conditioning therapy for allogeneic hematopoietic stem cell transplantation. Ann Hematol 81:454–461

    Article  PubMed  CAS  Google Scholar 

  12. Carr JM, Dvorak AM, Dvorak HF (1985) Circulating membrane vesicles in leukemic blood. Cancer Res 45:5944–5951

    PubMed  CAS  Google Scholar 

  13. Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760

    Article  PubMed  CAS  Google Scholar 

  14. Hron G, Kollars M, Webber H et al (2007) Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost 97:119–123

    PubMed  CAS  Google Scholar 

  15. Helley D, Banu E, Bouziane A et al (2009) Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. Eur Urol 56:479–485

    Article  PubMed  CAS  Google Scholar 

  16. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    PubMed  CAS  Google Scholar 

  17. Reich CF III, Pisetsky DS (2009) The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis. Exp Cell Res 315:760–768

    Article  PubMed  CAS  Google Scholar 

  18. Bell CW, Jiang W, Reich CF III, Pisetsky DS (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291:C1318–C1325

    Article  PubMed  CAS  Google Scholar 

  19. Diaz-Padilla I, Siu LL, Duran I (2009) Cyclin-dependent kinase inhibitors as potential targeted anticancer agents Invest New Drugs. doi:10.1007/s10637-009-9236-6

  20. Lapenna S, Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8:547–566

    Article  PubMed  CAS  Google Scholar 

  21. Distler JHW, Huber LC, Hueber AJ et al (2005) The release of microparticles by apoptotic cells and their effects on macrophages. Apoptosis 10:731–741

    Article  PubMed  CAS  Google Scholar 

  22. Rosen A, Casciola-Rosen L, Ahearn J (1995) Novel packages of viral and self-antigens are generated during apoptosis. J Exp Med 181:1557–1561

    Article  PubMed  CAS  Google Scholar 

  23. Hagmann J, Burger MM, Dagan D (1999) Regulation of plasma membrane blebbing by the cytoskeleton. J Cell Biochem 73:488–499

    Article  PubMed  CAS  Google Scholar 

  24. Gescher A (2000) Staurosporine analogues—pharmacological toys or useful antitumour agents? Crit Rev Oncol Hematol 34:127–135

    Article  PubMed  CAS  Google Scholar 

  25. Mizuno K, Noda K, Ueda Y et al (1995) UCN-01, an anti-tumor drug, is a selective inhibitor of the conventional PKC subfamily. FEBS Lett 359:259–261

    Article  PubMed  CAS  Google Scholar 

  26. Mackay HJ, Twelves CJ (2003) Protein kinase C: a target for anticancer drugs? Endocr Relat Cancer 10:389–396

    Article  PubMed  CAS  Google Scholar 

  27. Senderowicz AM (2003) Novel small molecule cyclin-dependent kinase modulators in human clinical trials. Cancer Biol Ther 2:S84–S95

    PubMed  CAS  Google Scholar 

  28. Monaco EA III, Beaman-Hall CM, Mathur A, Vallano ML (2004) Roscovitine, olomoucine, purvalanol: inducers of apoptosis in maturing cerebellar granule neurons. Biochem Pharmacol 67:1947–1964

    Article  PubMed  CAS  Google Scholar 

  29. Zwaal RFA, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62:971–988

    Article  PubMed  CAS  Google Scholar 

  30. Franz S, Herrmann K, Fuhrnrohr B et al (2006) After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes. Cell Death Differ 14:733–742

    Article  PubMed  CAS  Google Scholar 

  31. Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS (2003) Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 109:175–180

    Article  PubMed  CAS  Google Scholar 

  32. Biggiogera M, Bottone MG, Pellicciari C (1998) Nuclear RNA is extruded from apoptotic cells. J Histochem Cytochem 46:999–1006

    PubMed  CAS  Google Scholar 

  33. Lane JD, Allan VJ, Woodman PG (2005) Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells. J Cell Sci 118:4059–4071

    Article  PubMed  CAS  Google Scholar 

  34. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345

    Article  PubMed  CAS  Google Scholar 

  35. Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3:346–352

    Article  PubMed  CAS  Google Scholar 

  36. Shiratsuchi A, Mori T, Nakanishi Y (2002) Independence of plasma membrane blebbing from other biochemical and biological characteristics of apoptotic cells. J Biochem 132:381–386

    PubMed  CAS  Google Scholar 

  37. Langer F, Spath B, Haubold K et al (2008) Tissue factor procoagulant activity of plasma microparticles in patients with cancer-associated disseminated intravascular coagulation. Ann Hematol 87:451–457

    Article  PubMed  CAS  Google Scholar 

  38. Ratajczak J, Miekus K, Kucia M et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  PubMed  CAS  Google Scholar 

  39. Garcia JM, Garcia V, Pena C et al (2008) Extracellular plasma RNA from colon cancer patients is confined in a vesicle-like structure and is mRNA-enriched. RNA 14:1424–1432

    Article  PubMed  CAS  Google Scholar 

  40. Hunter MP, Ismail N, Zhang X et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3:e3694

    Article  PubMed  CAS  Google Scholar 

  41. Bebawy M, Combes V, Lee E et al (2009) Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia 23:1643–1649

    Article  PubMed  CAS  Google Scholar 

  42. Cocucci E, Racchetti G, Podini P, Meldolesi J (2007) Enlargeosome traffic: exocytosis triggered by various signals is followed by endocytosis, membrane shedding or both. Traffic 8:742–757

    Article  PubMed  CAS  Google Scholar 

  43. Mirnikjoo B, Balasubramanian K, Schroit AJ (2009) Suicidal membrane repair regulates phosphatidylserine externalization during apoptosis. J Biol Chem 284:22512–22516

    Article  PubMed  CAS  Google Scholar 

  44. Mannherz HG, Gonsior SM, Wu X et al (2006) Dual effects of staurosporine on A431 and NRK cells: microfilament disassembly and uncoordinated lamellipodial activity followed by cell death. Eur J Cell Biol 85:785–802

    Article  PubMed  CAS  Google Scholar 

  45. Yang R, Fu W, Wang S, Liu T, Lin-Shiau S (1997) Mechanism of the morphological changes induced by staurosporine in rat osteoblasts. Calcif Tissue Int 61:68–73

    Article  PubMed  CAS  Google Scholar 

  46. Hotte SJ, Oza A, Winquist EW et al (2006) Phase I trial of UCN-01 in combination with topotecan in patients with advanced solid cancers: a Princess Margaret Hospital Phase II Consortium study. Ann Oncol 17:334–340

    Article  PubMed  CAS  Google Scholar 

  47. Jimeno A, Rudek MA, Purcell T et al (2008) Phase I and pharmacokinetic study of UCN-01 in combination with irinotecan in patients with solid tumors. Cancer Chemother Pharmacol 61:423–433

    Article  PubMed  CAS  Google Scholar 

  48. Stepczynska A, Lauber K, Engels IH et al (2001) Staurosporine and conventional anticancer drugs induce overlapping, yet distinct pathways of apoptosis and caspase activation. Oncogene 20:1193–1202

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the VA Merit Review program, Alliance for Lupus Research and NIH grant AI082402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh J. Ullal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullal, A.J., Pisetsky, D.S. The release of microparticles by Jurkat leukemia T cells treated with staurosporine and related kinase inhibitors to induce apoptosis. Apoptosis 15, 586–596 (2010). https://doi.org/10.1007/s10495-010-0470-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0470-3

Keywords

Navigation