Skip to main content

Advertisement

Log in

Th1 or Th2 balance regulated by interaction between dendritic cells and NKT cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

If Th1 or Th2 polarization could be artificially manipulated, effective immune responses would be generated depending on nature of the targets. In this study we attempted to regulate CD40 expressions on dendritic cells (DCs) in order to modify the T cell response. It was found that reducing agents selectively inhibited surface expression of CD40 on DCs. This finding may provide a new strategy of DC-mediated modulation of the Th1/Th2 balance. It was also shown that NKT-produced Th1/Th2 cytokine balance was under control of negative feedback loop through DCs. Th1 cytokine-pretreated DCs mainly induced Th2 cytokine production, whereas Th2 cytokine-pretreated DCs induced Th1 cytokine production by α-galactosylceramide-stimulated NKT cells. The negative feedback regulation system could be applicable to therapeutics of various diseases based on immunological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stockinger B, Bourgeois C, Kassiotis G. CD4 memory T cells: functional differentiation and homeostasis. Immunol Rev 2006;211:39–48.

    Article  PubMed  CAS  Google Scholar 

  2. Diao H, Kon S, Iwabuchi K, Kimura C, Morimoto J, Ito D, Segawa T, Maeda M, Hamuro J, Nakayama T, Taniguchi M, Yagita H, Van Kaer L, Onoé K, Denhardt D, Rittling S, Uede T. Osteopontin as a mediator of NKT cell function in T cell mediated liver diseases. Immunity 2004;21(4):539–50.

    Article  PubMed  CAS  Google Scholar 

  3. Nakai Y, Iwabuchi K, Fujii S, Ishimori N, Watano K, Mishima T, Iwabuchi C, Tanaka S, Dashtsoodol N, Nakayama T, Taniguchi M, Miyake S, Yamamura T, Kitabatake A, Joyce S, Van Kaer L, Onoé K. Natural killer T cells accelerate atherogenesis in mice. Blood 2004;104(7):2051–9.

    Article  PubMed  CAS  Google Scholar 

  4. Hochrein H, O’Keeffe M, Luft T, Vandenabeele S, Grumont RJ, Maraskovsky E, Shortman K. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med 2000;192(6):823–33.

    Article  PubMed  CAS  Google Scholar 

  5. Miyamoto K, Miyake S, Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001;413(6855):531–4.

    Article  PubMed  CAS  Google Scholar 

  6. Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA, Wysocka M, Trinchieri G, Murphy KM, O’Garra A. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 1995;154(10):5071–9.

    PubMed  CAS  Google Scholar 

  7. Yoshimoto T, Bendelac A, Hu-Li J, Paul WE. Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin 4. Proc Natl Acad Sci USA 1995;92(25):11931–4.

    Article  PubMed  CAS  Google Scholar 

  8. Kikuchi K, Yanagwa Y, Aranami T, Iwabuchi C, Iwabuchi K, Onoé K. Tumour necrosis factor-α but not lipopolysaccharide enhances preference of murine dendritic cells for Th2 differentiation. Immunology 2003;108(1):42–9.

    Article  PubMed  CAS  Google Scholar 

  9. Iijima N, Yanagawa Y, Iwabuchi K, Onoé K. Selective regulation of CD40 expression in murine dendritic cells by thiol antioxidants. Immunology 2003;110(2):197–203.

    Article  PubMed  CAS  Google Scholar 

  10. Iijima N, Yanagawa Y, Onoé K. Role of early and late phase activation of p38 MAPK induced by TNF-α or 2, 4-dinitrobenzene during maturation of dendritic cells. Immunology 2003;110(3):322–8.

    Article  PubMed  CAS  Google Scholar 

  11. Minami K, Yanagawa Y, Iwabuchi K, Shinohara N, Harabayashi T, Nonomura K, Onoé K. Negative feed back regulation of T helper type 1 (Th1)/Th2 cytokine balance via dendritic cell and natural killer T cell interactions. Blood 2005;106(5):1685–93.

    Article  PubMed  CAS  Google Scholar 

  12. Takagi D, Iwabuchi K, Iwabuchi C, Nakamaru Y, Maguchi S, Ohwatari R, Furuta Y, Fukuda S, Joyce S, Onoé K. Immunoregulatory defects of Vα24+Vβ11+ NKT cells in development of Wegener’s granulomatosis and relapsing polychondritis. Clin Exp Immunol 2004;136(3):591–600.

    Article  PubMed  CAS  Google Scholar 

  13. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991;9:271–96.

    Article  PubMed  CAS  Google Scholar 

  14. Banchereau J, Steinman RM. Dendritic cells and the control of innunity. Nature 1998;392 (6673): 245–51.

    Article  PubMed  CAS  Google Scholar 

  15. Yanagawa Y, Onoé K. CCL19 induces rapid dendritic extension of murine dendritic cells. Blood 2002;100(6):1948–56.

    Article  PubMed  CAS  Google Scholar 

  16. Yanagawa Y, Onoé K. CCR7 ligands induce rapid endocytosis in mature dendritic cells with concomitant up-regulation of Cdc42 and Rac activities. Blood 2003;101(12):4923–9.

    Article  PubMed  CAS  Google Scholar 

  17. Iijima N, Yanagawa Y, Clingan JM, Onoé K. CCR7-mediated c-Jun N-terminal kinase activation regulates cell migration in mature dendritic cells. Int Immunol 2005;17(9):1201–12.

    Article  PubMed  CAS  Google Scholar 

  18. Yanagawa Y, Iijima N, Iwabuchi K, Onoé K. Activation of extracellular signal-related kinase by TNF-α controls the maturation and function of murine dendritic cells. J Leukoc Biol 2002;71(1):125–32.

    PubMed  CAS  Google Scholar 

  19. Yanagawa Y, Onoé K. Distinct regulation of CD40-mediated interleukin (IL)-6 IL-12 production via mitogen-activated protein kinase (MAPK) and nuclear factor-κB-inducing kinase (NIK) in mature dendritic cells. Immunology 2006;117(4):526–35.

    Article  PubMed  CAS  Google Scholar 

  20. Shinkura R, Kitada K, Matsuda F, Tashiro K, Ikuta K, Suzuki M, Kogishi K, Serikawa T, Honjo T. Alymphoplasia is caused by a point mutation in the mouse gene encoding NF-κb-inducing kinase. Nat Genet 1999;22(1):74–7.

    Article  PubMed  CAS  Google Scholar 

  21. Arase H, Arase N, Ogasawara K, Good RA, Onoé K. An NK1.1+ CD4 + 8 single positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor Vβ family. Proc Natl Acad Sci USA 1992;89(14):6506–10.

    Article  PubMed  CAS  Google Scholar 

  22. Arase H, Arase N, Nakagawa K, Good RA, Onoé K. NK1.1+ CD4+ CD8 thymocytes with specific lymphokine secretion. Eur J Immunol 1993;23(1):307–10.

    Article  PubMed  CAS  Google Scholar 

  23. Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD, Carbone DP, Paul WE, Berzofsky JA. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4-STAT 6 pathway. Nat Immunol 2000;1(6):515–20.

    Article  PubMed  CAS  Google Scholar 

  24. Arase H, Arase N, Kobayashi Y, Nishimura Y, Yonehara S, Onoé K. Cytotoxicity of fresh NK1.1+ T-cell receptor αβ+ thymocytes against a CD4 + 8+ thymocyte population associated with intact Fas antigen expression on the target. J Exp Med 1994;180(2):423–32.

    Article  PubMed  CAS  Google Scholar 

  25. Arase H, Arase-Fukushi N, Good RA, Onoé K. Lymphokine activated killer cell activity of CD4CD8 TCR αβ+ thymocytes. J Immunol 1993;151(2):546–55.

    PubMed  CAS  Google Scholar 

  26. Makino Y, Kanno R, Koseki H, Taniguchi M. Development of Vα14+ NK T cells in the early stages of embryogenesis. Proc Natl Acad Sci USA 1996;93(13):6516–20.

    Article  PubMed  CAS  Google Scholar 

  27. Iwabuchi C, Iwabuchi K, Nakagawa K, Takayanagi T, Nishihori H, Tone S, Ogasawara K, Good RA, Onoé K. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad. Proc Natl Acad Sci USA 1998;95(14):8199–204.

    Article  PubMed  CAS  Google Scholar 

  28. Ohwatari R, Iwabuchi K, Iwabuchi C, Morohashi T, Sawa H, Hioki K, Kobayashi K, Fukuda S, Inuyama Y, Onoé K. Developmental and functional analyses of CD8+ NK1.1+ T cells in the class I restricted TCR transgenic mice. Cell Immunol 2001;213(1):24–33.

    Article  PubMed  CAS  Google Scholar 

  29. Iwabuchi K, Iwabuchi C, Tone S, Itoh D, Tosa N, Negishi I, Ogasawara K, Uede T, Onoé K. Defective development of NK1.1+ T cell antigen receptor αβ+ cells in zeta-associated protein 70 null mice with an accumulation of NK1.1+ CD3 NK-like cells in the thymus. Blood 2001;97(11):1765–75.

    Article  PubMed  CAS  Google Scholar 

  30. Nakagawa K, Iwabuchi K, Ogasawara K, Ato M, Kajiwara M, Nishihori H, Iwabuchi C, Ishikura H, Good RA, Onoé K. Generation of NK1.1+ TCRα/β+ thymocytes associated with intact thymic structure. Proc Natl Acad Sci USA 1997;94(6):2472–7.

    Article  PubMed  CAS  Google Scholar 

  31. Konishi J, Iwabuchi K, Iwabuchi C, Ato M, Nagata J, Onoé K, Nakagawa K, Kasai M, Ogasawara K, Kawakami K, Onoé K. Thymic epithelial cells responsible for impaired generation of NK-T thymocytes in alymphoplasia mutant mice. Cell Immunol 2000;206(1):26–35.

    Article  PubMed  CAS  Google Scholar 

  32. Ross R. Atheroscherosis-an inflammatory disease. N Engl J Med 1999;340(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  33. Ishimori N, Iwabuchi K, Fujii S, Watano K, Iwabuchi C, Ato M, Chiba H, Kitabatake A, Onoé K. Mixed allogeneic chimerism with wild-type strains ameliorated atherosclerosis in apoliprotein E-deficient mice. J Leukoc Biol 2001;69(5):732–40.

    PubMed  CAS  Google Scholar 

  34. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 1997;278(5343):1626–9.

    Article  PubMed  CAS  Google Scholar 

  35. Fujii S, Shimizu K, Kronenberg M, Steinman RM. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat Immunol 2002;3(9):867–74.

    Article  PubMed  CAS  Google Scholar 

  36. Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R, Shay J, Kirchhoff K, Nishi N, Ando Y, Hayashi K, Hassoun H, Steinman RM, Dhodapkar MV. Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 2005;201(9):1503–17.

    Article  PubMed  CAS  Google Scholar 

  37. Finkelman FD, Madden KB, Morris SC, Holmes JM, Boiani N, Katona IM, Maliszewski CR. Anti-cytokine antibodies as carrier proteins. Prolongation of in␣vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J Immunol 1993;151(3):1235–44.

    PubMed  CAS  Google Scholar 

  38. Smyth MJ, Crowe NY, Pellicci DG, Kyparissoudis K, Kelly JM, Takeda K, Yagita H, Godfrey DI. Sequential production of interferon-γ by NK.1.1 (+) T cells and natural killer cells is essential for the antimetastatic effect of α-galactosylceramide. Blood 2002;99(4):1259–66.

    Article  PubMed  CAS  Google Scholar 

  39. Wilson M T, Singh A K, Van Kaer L. Immunotherapy with ligands of natural killer T cells. Trends Mol Med 2002;8(5):225–31.

    Article  PubMed  CAS  Google Scholar 

  40. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H. The regulatory role of Vα 14 NKT cells in innate and acquired immune response. Annu Rev Immunol 2003;21:483–513.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Sayaka Yagi and Ms. Mayumi Kondo for their secretarial assistance. This study was supported by a Grant-in-Aid for Scientific Research (S), (C), a Grant-in-Aid for Exploratory Research, and a Grant-in-Aid for Young Scientists (B) from JSPS and a Grant-in-Aid for Scientific Research on Priority Areas by the MEXT Japan. This study was also supported by the Uehara Memorial Life Science Foundation, Akiyam Memorial Foundation, Suhara Memorial Foundation, and Tamakomai East Hospital Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Onoé.

Additional information

Presented at the First Robert A Good Society Symposium, St. Petersburg, FL 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onoé, K., Yanagawa, Y., Minami, K. et al. Th1 or Th2 balance regulated by interaction between dendritic cells and NKT cells. Immunol Res 38, 319–332 (2007). https://doi.org/10.1007/s12026-007-0011-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-007-0011-5

Keywords

Navigation