Skip to main content

Advertisement

Log in

In Vitro Immunological Effects of CXCR3 Inhibitor AMG487 on Dendritic Cells

  • Original Article
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

AMG 487 is the targeted blocker of chemokine receptor CXCR3 and improves inflammatory symptoms by blocking the inflammatory cycle. Here we investigated whether AMG 487 affects dendritic cell (DC) biology and function. The expression of co-stimulatory markers on DCs was reduced, indicating the semi-mature state of DC when AMG 487 was added throughout the in vitro differentiation period. Additionally, when added solely during the final lipopolysaccharide-induced activation step, AMG 487 inhibited DC activation, as demonstrated by a decreased expression of activation markers. AMG487 also promoted the expression of PD-L2 and impaired the ability to induce antigen-specific T cell responses. Our results demonstrated that AMG 487 significantly affects DC maturity in vitro and function leading to impaired T cell activation, inducing DCs to have characteristics similar to tolerogenic DCs. AMG 487 may directly play an immunomodulatory role during DC development and functional shaping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    CAS  PubMed  Google Scholar 

  • Billottet C, Quemener C, Bikfalvi A (2013) CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta 1836:287–295

    CAS  PubMed  Google Scholar 

  • Boks MA, Kager-Groenland JR, Haasjes MS, Zwaginga JJ, van Ham SM et al (2012) IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction–a comparative study of human clinical-applicable DC. Clin Immunol 142:332–342

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Guo J, Yang M, Han C, Zhang M et al (2004) Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor expression and inhibiting cyclooxygenase-2 expression. Blood 103:413–421

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yin D, Fan B, Zhu X, Chen Q et al (2019) Chemokine CXCL10/CXCR3 signaling contributes to neuropathic pain in spinal cord and dorsal root ganglia after chronic constriction injury in rats. Neurosci Lett 694:20–28

    Article  CAS  PubMed  Google Scholar 

  • Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M et al (1998) Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187:2009–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN (2007) Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol 82:1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Cools N, Petrizzo A, Smits E, Buonaguro FM, Tornesello ML et al (2011) Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons? Immunotherapy 3:1203–1222

    Article  CAS  PubMed  Google Scholar 

  • Croudace JE, Inman CF, Abbotts BE, Nagra S, Nunnick J et al (2012) Chemokine-mediated tissue recruitment of CXCR3 + CD4+ T cells plays a major role in the pathogenesis of chronic GVHD. Blood 120:4246–4255

    Article  CAS  PubMed  Google Scholar 

  • Elze MC, Ciocarlie O, Heinze A, Kloess S, Gardlowski T et al (2015) Dendritic cell reconstitution is associated with relapse-free survival and acute GVHD severity in children after allogeneic stem cell transplantation. Bone Marrow Transpl 50:266–273

    Article  CAS  Google Scholar 

  • Ezzelarab M, Thomson AW (2011) Tolerogenic dendritic cells and their role in transplantation. Semin Immunol 23:252–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Lopez MA, Sanchez-Madrid F, Rodriguez-Frade JM, Mellado M, Acevedo A et al (2001) CXCR3 chemokine receptor distribution in normal and inflamed tissues: expression on activated lymphocytes, endothelial cells, and dendritic cells. Lab Invest 81:409–418

    Article  CAS  PubMed  Google Scholar 

  • Geijtenbeek TB, den Dunnen J, Gringhuis SI (2009) Pathogen recognition by DC-SIGN shapes adaptive immunity. Future Microbiol 4:879–890

    Article  CAS  PubMed  Google Scholar 

  • Goncalves MV, Yamamoto M, Kimura EY, Colturato VA, de Souza MP et al (2015) Low counts of plasmacytoid dendritic cells after engraftment are associated with high early mortality after allogeneic stem cell transplantation. Biol Blood Marrow Transpl 21:1223–1229

    Article  Google Scholar 

  • Guo YC, Chiu YH, Chen CP, Wang HS (2018a) Interleukin-1beta induces CXCR3-mediated chemotaxis to promote umbilical cord mesenchymal stem cell transendothelial migration. Stem Cell Res Ther 9:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo M, Chang P, Hauke E, Girard BM, Tooke K et al (2018b) Expression and Function of Chemokines CXCL9-11 in Micturition Pathways in Cyclophosphamide (CYP)-Induced Cystitis and Somatic Sensitivity in Mice. Front Syst Neurosci 12:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Hackstein H, Thomson AW (2004) Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 4:24–34

    Article  CAS  PubMed  Google Scholar 

  • Hill M, Cuturi MC (2010) Negative vaccination by tolerogenic dendritic cells in organ transplantation. Curr Opin Organ Transplant 15:738–743

    Article  PubMed  Google Scholar 

  • Hu J, Wan Y (2011) Tolerogenic dendritic cells and their potential applications. Immunology 132:307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hueso L, Ortega R, Selles F, Wu-Xiong NY, Ortega J et al (2018) Upregulation of angiostatic chemokines IP-10/CXCL10 and I-TAC/CXCL11 in human obesity and their implication for adipose tissue angiogenesis. Int J Obes (Lond) 42:1406–1417

    Article  CAS  Google Scholar 

  • Ilarregui JM, Croci DO, Bianco GA, Toscano MA, Salatino M et al (2009) Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10:981–991

    Article  CAS  PubMed  Google Scholar 

  • Jenh CH, Cox MA, Cui L, Reich EP, Sullivan L et al (2012) A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection. BMC Immunol 13:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin N, Razon H (2018) Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity. Cytokine 109:24–28

    Article  CAS  PubMed  Google Scholar 

  • Lacotte S, Brun S, Muller S, Dumortier H (2009) CXCR3, inflammation, and autoimmune diseases. Ann NY Acad Sci 1173:310–317

    Article  CAS  PubMed  Google Scholar 

  • Li H, Shi B (2015) Tolerogenic dendritic cells and their applications in transplantation. Cell Mol Immunol 12:24–30

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Gu J, Zhu Q, Liu J, Lu H et al (2017) Obese donor mice splenocytes aggravated the pathogenesis of acute graft-versus-host disease via regulating differentiation of Tregs and CD4(+) T cell induced-type I inflammation. Oncotarget 8:74880–74896

    PubMed  PubMed Central  Google Scholar 

  • Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L et al (1996) Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184:963–969

    Article  CAS  PubMed  Google Scholar 

  • Miao S, Tang B, Liu H, Wang Z, Shi Y et al (2018) CXCR3 blockade combined with cyclosporine A alleviates acute graft-versus-host disease by inhibiting alloreactive donor T cell responses in a murine model. Mol Immunol 94:82–90

    Article  CAS  PubMed  Google Scholar 

  • Min WP, Gorczynski R, Huang XY, Kushida M, Kim P et al (2000) Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J Immunol 164:161–167

    Article  CAS  PubMed  Google Scholar 

  • Mohan K, Issekutz TB (2007) Blockade of chemokine receptor CXCR3 inhibits T cell recruitment to inflamed joints and decreases the severity of adjuvant arthritis. J Immunol 179:8463–8469

    Article  CAS  PubMed  Google Scholar 

  • Moser K, Kalies K, Szyska M, Humrich JY, Amann K et al (2012) CXCR3 promotes the production of IgG1 autoantibodies but is not essential for the development of lupus nephritis in NZB/NZW mice. Arthritis Rheum 64:1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M (2005) Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6:280–286

    Article  CAS  PubMed  Google Scholar 

  • Remy S, Blancou P, Tesson L, Tardif V, Brion R et al (2009) Carbon monoxide inhibits TLR-induced dendritic cell immunogenicity. J Immunol 182:1877–1884

    Article  CAS  PubMed  Google Scholar 

  • Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126

    Article  CAS  PubMed  Google Scholar 

  • Struyf S, Salogni L, Burdick MD, Vandercappellen J, Gouwy M et al (2011) Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3. Blood 117:480–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonn GR, Wong SG, Wong SC, Johnson MG, Ma J et al (2009) An inhibitory metabolite leads to dose- and time-dependent pharmacokinetics of (R)-N-{1-[3-(4-ethoxy-phenyl)-4-oxo-3,4-dihydro-pyrido[2,3-d]pyrimidin-2-yl]-ethy l}-N-pyridin-3-yl-methyl-2-(4-trifluoromethoxy-phenyl)-acetamide (AMG 487) in human subjects after multiple dosing. Drug Metab Dispos 37:502–513

    Article  CAS  PubMed  Google Scholar 

  • Trivedi PJ, Adams DH (2018) Chemokines and chemokine receptors as therapeutic targets in inflammatory bowel disease; pitfalls and promise. J Crohns Colitis 12:S641–S652

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S (2015) CXCR3 ligands in disease and therapy. Cytokine Growth Fact Rev 26:311–327

    Article  Google Scholar 

  • Wijtmans M, Verzijl D, Leurs R, de Esch IJ, Smit MJ (2008) Towards small-molecule CXCR3 ligands with clinical potential. ChemMedChem 3:861–872

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Rhoda and Ed Perozzi for providing language help of this article.

Funding

This work was supported by the National Natural Science Foundation of China [No. 81570160 & No. 8197160].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanyun Ren.

Ethics declarations

Conflict of Interest Statement

The authors declared that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, C., Liu, H., Tang, B. et al. In Vitro Immunological Effects of CXCR3 Inhibitor AMG487 on Dendritic Cells. Arch. Immunol. Ther. Exp. 68, 11 (2020). https://doi.org/10.1007/s00005-020-00577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00005-020-00577-3

Keywords

Navigation