Skip to main content
Log in

Preoperative Risk Stratification of Follicular-patterned Thyroid Lesions on Core Needle Biopsy by Histologic Subtyping and RAS Variant-specific Immunohistochemistry

  • Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Follicular-patterned lesions often have indeterminate results (diagnostic category III or IV) by core needle biopsy (CNB) and fine needle aspiration (FNA). However, CNB diagnoses follicular neoplasm (category IV) more frequently than FNA. Therefore, we aimed to develop a risk stratification system for CNB samples with category III/IV using immunohistochemistry (IHC). The specificity of the RAS Q61R antibody was validated on 58 thyroid nodules with six different types of RAS genetic variants and 40 cases of RAS wild-type. We then applied IHC analysis of RAS Q61R to 207 CNB samples with category III/IV in which all patients underwent surgical resection. RAS Q61R IHC had 98% sensitivity and 98% specificity for detecting the RAS p.Q16R variant. In an independent dataset, the positive rate of RAS Q61R was significantly higher in NIFTP (48%) and malignancies (45%) than in benign tumors (19%). The risk of NIFTP/malignancy was highest in the group with nuclear atypia and RAS Q61R expression (86%) and lowest in the group without both parameters (32%). The high-risk group with either nuclear atypia or RAS Q61R had 67.3% sensitivity, 73.4% specificity, 75.2% positive predictive value, and 65.1% negative predictive value for identifying NIFTP/malignancy. We conclude that RAS Q61R IHC can be a rule-in diagnostic test for NIFTP/malignancy in CNB category III/IV results. Combining of the histologic parameter (nuclear atypia) with RAS Q61R IHC results can further stratify CNB category III/IV into a high-risk group, which is sufficient for a surgical referral, and a low-risk group sufficient for observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

All data analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Ahn SH. Usage and Diagnostic Yield of Fine-Needle Aspiration Cytology and Core Needle Biopsy in Thyroid Nodules: A Systematic Review and Meta-Analysis of Literature Published by Korean Authors. Clin Exp Otorhinolaryngol. 2021;14(1):116-30. https://doi.org/10.21053/ceo.2020.00199.

    Article  PubMed  Google Scholar 

  2. Kim K, Bae JS, Kim JS, Jung SL, Jung CK. Diagnostic Performance of Thyroid Core Needle Biopsy Using the Revised Reporting System: Comparison with Fine Needle Aspiration Cytology. Endocrinol Metab (Seoul). 2022;37(1):159-69. https://doi.org/10.3803/EnM.2021.1299.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Na DG, Baek JH, Jung SL, Kim JH, Sung JY, Kim KS, et al. Core Needle Biopsy of the Thyroid: 2016 Consensus Statement and Recommendations from Korean Society of Thyroid Radiology. Korean J Radiol. 2017;18(1):217-37. https://doi.org/10.3348/kjr.2017.18.1.217.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Trimboli P, Nasrollah N, Guidobaldi L, Taccogna S, Cicciarella Modica DD, Amendola S, et al. The use of core needle biopsy as first-line in diagnosis of thyroid nodules reduces false negative and inconclusive data reported by fine-needle aspiration. World J Surg Oncol. 2014;12:61. https://doi.org/10.1186/1477-7819-12-61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Suh CH, Baek JH, Lee JH, Choi YJ, Kim JK, Sung TY, et al. The Role of Core-Needle Biopsy as a First-Line Diagnostic Tool for Initially Detected Thyroid Nodules. Thyroid. 2016;26(3):395-403. https://doi.org/10.1089/thy.2015.0404.

    Article  PubMed  Google Scholar 

  6. Kim HC, Kim YJ, Han HY, Yi JM, Baek JH, Park SY, et al. First-Line Use of Core Needle Biopsy for High-Yield Preliminary Diagnosis of Thyroid Nodules. AJNR Am J Neuroradiol. 2017;38(2):357-63. https://doi.org/10.3174/ajnr.A5007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang M, Zhang Y, Fu S, Lv F, Tang J. Thyroid nodules with suspicious ultrasound findings: the role of ultrasound-guided core needle biopsy. Clin Imaging. 2014;38(4):434-8. https://doi.org/10.1016/j.clinimag.2014.03.010.

    Article  PubMed  Google Scholar 

  8. Nikiforov YE. Molecular analysis of thyroid tumors. Mod Pathol. 2011;24 Suppl 2(2):S34-43. https://doi.org/10.1038/modpathol.2010.167.

  9. Marotta V, Bifulco M, Vitale M. Significance of RAS Mutations in Thyroid Benign Nodules and Non-Medullary Thyroid Cancer. Cancers (Basel). 2021;13(15):3785. https://doi.org/10.3390/cancers13153785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agarwal S, Bychkov A, Jung CK. Emerging Biomarkers in Thyroid Practice and Research. Cancers (Basel). 2021;14(1). https://doi.org/10.3390/cancers14010204.

  11. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133. https://doi.org/10.1089/thy.2015.0020.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Burge RA, Hobbs GA. Chapter Two - Not all RAS mutations are equal: A detailed review of the functional diversity of RAS hot spot mutations. In: O'Bryan JP, Piazza GA, editors. Adv Cancer Res. Academic Press; 2022. p. 29-61.

    Google Scholar 

  13. Huynh MV, Hobbs GA, Schaefer A, Pierobon M, Carey LM, Diehl JN, et al. Functional and biological heterogeneity of KRAS(Q61) mutations. Sci Signal. 2022;15(746):eabn2694. https://doi.org/10.1126/scisignal.abn2694.

  14. Massi D, Simi L, Sensi E, Baroni G, Xue G, Scatena C, et al. Immunohistochemistry is highly sensitive and specific for the detection of NRASQ61R mutation in melanoma. Mod Pathol. 2015;28(4):487-97.

    Article  CAS  PubMed  Google Scholar 

  15. Lasota J, Kowalik A, Felisiak-Golabek A, Inaguma S, Wang ZF, Pieciak L, et al. SP174, NRAS Q61R Mutant-Specific Antibody, Cross-Reacts With KRAS Q61R Mutant Protein in Colorectal Carcinoma. Arch Pathol Lab Med. 2017;141(4):564-8. https://doi.org/10.5858/arpa.2016-0147-OA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ilie M, Long-Mira E, Funck-Brentano E, Lassalle S, Butori C, Lespinet-Fabre V, et al. Immunohistochemistry as a potential tool for routine detection of the NRAS Q61R mutation in patients with metastatic melanoma. J Am Acad Dermatol. 2015;72(5):786-93. https://doi.org/10.1016/j.jaad.2015.01.012.

    Article  CAS  PubMed  Google Scholar 

  17. Felisiak-Golabek A, Inaguma S, Kowalik A, Wasag B, Wang ZF, Zieba S, et al. SP174 Antibody Lacks Specificity for NRAS Q61R and Cross-Reacts With HRAS and KRAS Q61R Mutant Proteins in Malignant Melanoma. Appl Immunohistochem Mol Morphol. 2018;26(1):40-5. https://doi.org/10.1097/PAI.0000000000000500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hancock JF. Ras proteins: different signals from different locations. Nature Reviews Molecular Cell Biology. 2003;4(5):373-85. https://doi.org/10.1038/nrm1105.

    Article  CAS  PubMed  Google Scholar 

  19. Oishi N, Kondo T, Vuong HG, Nakazawa T, Mochizuki K, Kasai K, et al. Immunohistochemical detection of NRAS(Q61R) protein in follicular-patterned thyroid tumors. Hum Pathol. 2016;53:51-7. https://doi.org/10.1016/j.humpath.2016.02.008.

    Article  CAS  PubMed  Google Scholar 

  20. Crescenzi A, Fulciniti F, Bongiovanni M, Giovanella L, Trimboli P. Detecting N-RAS Q61R Mutated Thyroid Neoplasias by Immunohistochemistry. Endocr Pathol. 2017;28(1):71-4. https://doi.org/10.1007/s12022-016-9466-z.

    Article  CAS  PubMed  Google Scholar 

  21. Saliba M, Katabi N, Dogan S, Xu B, Ghossein RA. NRAS Q61R immunohistochemical staining in thyroid pathology: sensitivity, specificity and utility. Histopathology. 2021;79(4):650-60. https://doi.org/10.1111/his.14396.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022;33(1):27-63. https://doi.org/10.1007/s12022-022-09707-3.

    Article  PubMed  Google Scholar 

  23. Jung CK, Bychkov A, Kakudo K. Update from the 2022 World Health Organization Classification of Thyroid Tumors: A Standardized Diagnostic Approach. Endocrinol Metab (Seoul). 2022;37(5):703-18. https://doi.org/10.3803/EnM.2022.1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jung CK, Baek JH, Na DG, Oh YL, Yi KH, Kang HC. 2019 Practice guidelines for thyroid core needle biopsy: a report of the Clinical Practice Guidelines Development Committee of the Korean Thyroid Association. J Pathol Transl Med. 2020;54(1):64-86. https://doi.org/10.4132/jptm.2019.12.04.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jung CK, Kim Y, Jeon S, Jo K, Lee S, Bae JS. Clinical utility of EZH1 mutations in the diagnosis of follicular-patterned thyroid tumors. Hum Pathol. 2018;81:9-17. https://doi.org/10.1016/j.humpath.2018.04.018.

    Article  CAS  PubMed  Google Scholar 

  26. Kwon H, Jung JH, Han KD, Park YG, Cho JH, Lee DY, et al. Prevalence and Annual Incidence of Thyroid Disease in Korea from 2006 to 2015: A Nationwide Population-Based Cohort Study. Endocrinol Metab (Seoul). 2018;33(2):260-7. https://doi.org/10.3803/EnM.2018.33.2.260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hancock JF. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol. 2003;4(5):373-84. https://doi.org/10.1038/nrm1105.

    Article  CAS  PubMed  Google Scholar 

  28. Haq F, Bychkov A, Jung CK. A Matched-Pair Analysis of Nuclear Morphologic Features Between Core Needle Biopsy and Surgical Specimen in Thyroid Tumors Using a Deep Learning Model. Endocr Pathol. 2022;33(4):472-83. https://doi.org/10.1007/s12022-022-09733-1.

    Article  CAS  PubMed  Google Scholar 

  29. An JH, Song KH, Kim SK, Park KS, Yoo YB, Yang JH, et al. RAS mutations in indeterminate thyroid nodules are predictive of the follicular variant of papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2015;82(5):760-6. https://doi.org/10.1111/cen.12579.

    Article  CAS  PubMed  Google Scholar 

  30. Clinkscales W, Ong A, Nguyen S, Harruff EE, Gillespie MB. Diagnostic Value of <i>RAS</i> Mutations in Indeterminate Thyroid Nodules: Systematic Review and Meta‐analysis. Otolaryngology–Head and Neck Surgery. 2017;156(3):472-9. https://doi.org/10.1177/0194599816685697.

    Article  PubMed  Google Scholar 

  31. Guan H, Toraldo G, Cerda S, Godley FA, Rao SR, McAneny D, et al. Utilities of RAS Mutations in Preoperative Fine Needle Biopsies for Decision Making for Thyroid Nodule Management: Results from a Single-Center Prospective Cohort. Thyroid. 2020;30(4):536-47. https://doi.org/10.1089/thy.2019.0116.

    Article  CAS  PubMed  Google Scholar 

  32. Na HY, Woo JW, Moon JH, Choi JY, Jeong WJ, Kim YK, et al. Preoperative Diagnostic Categories of Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features in Thyroid Core Needle Biopsy and Its Impact on Risk of Malignancy. Endocr Pathol. 2019;30(4):329-39. https://doi.org/10.1007/s12022-019-09590-5.

    Article  CAS  PubMed  Google Scholar 

  33. Chung SR, Baek JH, Lee JH, Lee YM, Sung TY, Chung KW, et al. Risk of Malignancy According to the Sub-classification of Atypia of Undetermined Significance and Suspicious Follicular Neoplasm Categories in Thyroid Core Needle Biopsies. Endocr Pathol. 2019;30(2):146-54. https://doi.org/10.1007/s12022-019-9577-4.

    Article  CAS  PubMed  Google Scholar 

  34. Jung CK, Min HS, Park HJ, Song DE, Kim JH, Park SY, et al. Pathology Reporting of Thyroid Core Needle Biopsy: A Proposal of the Korean Endocrine Pathology Thyroid Core Needle Biopsy Study Group. J Pathol Transl Med. 2015;49(4):288-99. https://doi.org/10.4132/jptm.2015.06.04.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by a grant (HI21C0940) from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea. This research was also supported by a grant (NRF-2020R1F1A1070028) from the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, C.K.J.; Methodology, M.K. and S.J.; Validation, C.K.J; Data Analysis, M.K., S.J., and C.K.J; Investigation, M.K. and C.K.J; Resources, C.K.J.; Data Curation, M.K. and C.K.J.; Writing – Original Draft Preparation; M.K. and C.K.J; Writing – Review & Editing, M.K., S.J., and C.K.J.; Supervision, C.K.J. All authors have read and agreed to the submitted version.

Corresponding author

Correspondence to Chan Kwon Jung.

Ethics declarations

Ethics Approval

This study was conducted according to the guidelines of the Declaration of Helsinki, and was approved by the Institutional Review Board of Seoul St. Mary’s Hospital of the Catholic University of Korea (KC20TISI0766).

Consent for Publication

All the authors approved for the publication of this paper.

Conflicts of Interest

There authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Jeon, S. & Jung, C.K. Preoperative Risk Stratification of Follicular-patterned Thyroid Lesions on Core Needle Biopsy by Histologic Subtyping and RAS Variant-specific Immunohistochemistry. Endocr Pathol 34, 247–256 (2023). https://doi.org/10.1007/s12022-023-09763-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-023-09763-3

Keywords

Navigation