Skip to main content

Advertisement

Log in

Immunohistochemical Expression of p16 and p21 in Pituitary Tissue Adjacent to Pituitary Adenoma versus Pituitary Tissue Obtained at Autopsy: Is There a Difference?

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Normal pituitary tissue is frequently used for comparison with protein expression in tumor tissue, being obtained either at surgery or at autopsy. p16 and p21 proteins are cyclin-dependent kinase inhibitors, belonging to INK4 and Cip/Kip family, respectively. Their expression is increased in response to DNA damage or other cellular stressors, resulting in the activation of cell cycle checkpoints. They also play important roles in cellular senescence. The purpose of this study was to investigate differences in p16 and p21 immunohistochemical expression in normal pituitary tissue adjacent to pituitary adenoma obtained during neurosurgical procedure with pituitary tissue obtained at autopsy, from patients who died from non-endocrinological diseases. Our results show significant difference in p16 nuclear and p21 cytoplasmic immunohistochemical expression between two types of normal pituitary tissues. One of the reasons for this difference could be the age of subjects because those who underwent autopsy for a non-endocrinological disease were significantly older than subjects who underwent neurosurgery for a pituitary adenoma. Our finding that differences are probably not influenced by postmortem changes is supported by no significant correlation between postmortem interval and immunohistochemical p16 and p21 expression. The influence of the presence of a pituitary adenoma could not be evaluated in these specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112:1603–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Chesnokova V, Zonis S, Rubinek T, Yu R, Ben-Shlomo A, Kovacs K, et al. (2007) Senescence mediates pituitary hypoplasia and restrains pituitary tumor growth. Cancer research 67:10564–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–25

    Article  CAS  PubMed  Google Scholar 

  4. Warfel NA, El-Deiry WS (2013) p21WAF1 and tumourigenesis: 20 years after. Current opinion in oncology 25:52–8

    Article  CAS  PubMed  Google Scholar 

  5. Romanov VS, Pospelov VA, Pospelova TV (2012) Cyclin-dependent kinase inhibitor p21(Waf1): contemporary view on its role in senescence and oncogenesis. Biochemistry (Mosc) 77:575–84

    Article  CAS  Google Scholar 

  6. Rowland BD, Peeper DS (2006) KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6:11–23

    Article  CAS  PubMed  Google Scholar 

  7. Cmielova J, Rezacova M (2011) p21Cip1/Waf1 protein and its function based on a subcellular localization [corrected]. Journal of cellular biochemistry 112:3502–6

    Article  CAS  PubMed  Google Scholar 

  8. Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E (2010) Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res 704:12–20

    Article  CAS  PubMed  Google Scholar 

  9. Chesnokova V, Zonis S, Kovacs K, Ben-Shlomo A, Wawrowsky K, Bannykh S, et al. (2008) p21(Cip1) restrains pituitary tumor growth. Proceedings of the National Academy of Sciences of the United States of America 105:17498–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Human Protein Atlas (2014) CDKN1A. http://www.proteinatlas.org/ENSG00000124762/antibody Accessed 3 November 2014

  11. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–7.

    Article  CAS  PubMed  Google Scholar 

  12. Human Protein Atlas (2014) CDKN2A http://www.proteinatlas.org/ENSG00000147889/antibody Accessed 3 November 2014.

  13. Alexandraki KI, Munayem Khan M, Chahal HS, Dalantaeva NS, Trivellin G, Berney DM, et al. (2012) Oncogene-induced senescence in pituitary adenomas and carcinomas. Hormones (Athens, Greece) 11:297–307

    Article  Google Scholar 

  14. Farrell WE, Clayton RN (2003) Epigenetic change in pituitary tumorigenesis. Endocr Relat Cancer 10:323–30

    Article  CAS  PubMed  Google Scholar 

  15. Rayess H, Wang MB, Srivatsan ES (2012) Cellular senescence and tumor suppressor gene p16. International journal of cancer Journal international du cancer 130:1715–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Takeuchi S, Takahashi A, Motoi N, Yoshimoto S, Tajima T, Yamakoshi K, et al. (2010) Intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumor suppression in vivo. Cancer research 70:9381–90

    Article  CAS  PubMed  Google Scholar 

  17. Korbonits M, Chahal HS, Kaltsas G, Jordan S, Urmanova Y, Khalimova Z, et al. (2002) Expression of phosphorylated p27(Kip1) protein and Jun activation domain-binding protein 1 in human pituitary tumors. J Clin Endocrinol Metab 87:2635–43

    Article  CAS  PubMed  Google Scholar 

  18. Xu Y, Wang Y, Ma G, Wang Q, Wei G (2014) CUL4A is overexpressed in human pituitary adenomas and regulates pituitary tumor cell proliferation. J Neurooncol 116:625–32

    Article  CAS  PubMed  Google Scholar 

  19. Li W, Zhang Y, Zhang M, Huang G, Zhang Q (2014) Wnt4 is overexpressed in human pituitary adenomas and is associated with tumor invasion. J Clin Neurosci 21:137–41

    Article  PubMed  Google Scholar 

  20. Lee EH, Kim KH, Kwon JH, Kim HD, Kim YZ (2014) Results of immunohistochemical staining of cell-cycle regulators: the prediction of recurrence of functioning pituitary adenoma. World Neurosurg 81:563–75

    Article  PubMed  Google Scholar 

  21. Colli LM, Saggioro F, Serafini LN, Camargo RC, Machado HR, Moreira AC, et al. (2013) Components of the canonical and non-canonical Wnt pathways are not mis-expressed in pituitary tumors. PLoS One 8:e62424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Akinci H, Kapucu A, Dar KA, Celik O, Tutunculer B, Sirin G, et al. (2013) Aromatase cytochrome P450 enzyme expression in prolactinomas and its relationship to tumor behavior. Pituitary 16:386–92

    Article  CAS  PubMed  Google Scholar 

  23. Miao Z, Miao Y, Lin Y, Lu X (2012) Overexpression of the Notch3 receptor in non-functioning pituitary tumours. J Clin Neurosci 19:107–10

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Ma S, Yao Y, Li G, Feng M, Deng K, et al. (2012) Differential expression of folate receptor alpha in pituitary adenomas and its relationship to tumor behavior. Neurosurgery 70:1274–80

    Article  PubMed  Google Scholar 

  25. Garcia EA, Trivellin G, Aflorei ED, Powell M, Grieve J, Alusi G, et al. (2013) Characterization of SNARE proteins in human pituitary adenomas: targeted secretion inhibitors as a new strategy for the treatment of acromegaly? J Clin Endocrinol Metab 98:E1918-26

    Article  CAS  PubMed  Google Scholar 

  26. Mordes DA, Lynch K, Campbell S, Dias-Santagata D, Nose V, Louis DN, et al. (2014) VE1 antibody immunoreactivity in normal anterior pituitary and adrenal cortex without detectable BRAF V600E mutations. Am J Clin Pathol 141:811–5

    Article  PubMed  Google Scholar 

  27. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, et al. (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature medicine 4:844–7

    Article  CAS  PubMed  Google Scholar 

  28. DeLellis RA (2004) Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press

    Google Scholar 

  29. Sawicka M, Pawlikowski J, Wilson S, Ferdinando D, Wu H, Adams PD, et al. (2013) The specificity and patterns of staining in human cells and tissues of p16INK4a antibodies demonstrate variant antigen binding. PLoS One 8:e53313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Remmele W, Stegner HE (1987). Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 8:138–40

    CAS  PubMed  Google Scholar 

  31. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  CAS  PubMed  Google Scholar 

  32. Quereda V, Martinalbo J, Dubus P, Carnero A, Malumbres M (2007) Genetic cooperation between p21Cip1 and INK4 inhibitors in cellular senescence and tumor suppression. Oncogene 26:7665–74

    Article  CAS  PubMed  Google Scholar 

  33. Tominaga K, Pereira-Smith OM (2012) The role of chromatin reorganization in the process of cellular senescence. Current drug targets 13:1593–602

    Article  CAS  PubMed  Google Scholar 

  34. Herbig U, Sedivy JM (2006) Regulation of growth arrest in senescence: telomere damage is not the end of the story. Mech Ageing Dev 127:16–24

    Article  CAS  PubMed  Google Scholar 

  35. Huang Y, Wang W, Chen Y, Huang Y, Zhang J, He S, et al. (2013) The opposite prognostic significance of nuclear and cytoplasmic p21 expression in resectable gastric cancer patients. J Gastroenterol 49:1441–52

    Article  PubMed  Google Scholar 

  36. Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A (2008) PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev 22:2496–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Amador V, Ge S, Santamaria PG, Guardavaccaro D, Pagano M (2007) APC/C(Cdc20) controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol Cell 27:462–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M (2003) Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell 115:71–82

    Article  CAS  PubMed  Google Scholar 

  39. Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A (2003) Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 278:25752–7

    Article  CAS  PubMed  Google Scholar 

  40. Kim Y, Starostina NG, Kipreos ET (2008) The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev 22:2507–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, et al. (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11:847–62

    Article  CAS  PubMed  Google Scholar 

  42. Dash BC, El-Deiry WS (2005) Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol Cell Biol 25:3364–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Lu Z, Hunter T (2010) Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell cycle (Georgetown, Tex) 9:2342–52

    Article  CAS  Google Scholar 

  44. Yong ST, Wang XF (2012) A novel, non-apoptotic role for Scythe/BAT3: a functional switch between the pro- and anti-proliferative roles of p21 during the cell cycle. PLoS One 7:e38085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Seemann N, Kuhn D, Wrocklage C, Keyvani K, Hackl W, Buchfelder M, et al. (2001) CDKN2A/p16 inactivation is related to pituitary adenoma type and size. The Journal of pathology 193:491–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Education and Science of Republic of Serbia, Grant No 175033.

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilija Manojlovic Gacic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manojlovic Gacic, E., Skender-Gazibara, M., Soldatovic, I. et al. Immunohistochemical Expression of p16 and p21 in Pituitary Tissue Adjacent to Pituitary Adenoma versus Pituitary Tissue Obtained at Autopsy: Is There a Difference?. Endocr Pathol 26, 104–110 (2015). https://doi.org/10.1007/s12022-015-9358-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-015-9358-7

Keywords

Navigation