Skip to main content
Log in

Growth-Associated Protein 43 and Tensor-Based Morphometry Indices in Mild Cognitive Impairment

  • Research
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Growth-associated protein 43 (GAP-43) is found in the axonal terminal of neurons in the limbic system, which is affected in people with Alzheimer’s disease (AD). We assumed GAP-43 may contribute to AD progression and serve as a biomarker. So, in a two-year follow-up study, we assessed GAP-43 changes and whether they are correlated with tensor-based morphometry (TBM) findings in patients with mild cognitive impairment (MCI). We included MCI and cognitively normal (CN) people with available baseline and follow-up cerebrospinal fluid (CSF) GAP-43 and TBM findings from the ADNI database. We assessed the difference between the two groups and correlations in each group at each time point. CSF GAP-43 and TBM measures were similar in the two study groups in all time points, except for the accelerated anatomical region of interest (ROI) of CN subjects that were significantly greater than those of MCI. The only significant correlations with GAP-43 observed were those inverse correlations with accelerated and non-accelerated anatomical ROI in MCI subjects at baseline. Plus, all TBM metrics decreased significantly in all study groups during the follow-up in contrast to CSF GAP-43 levels. Our study revealed significant associations between CSF GAP-43 levels and TBM indices among people of the AD spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data used and generated in this work, including downloaded datasets from ADNI and SPSS generated results are available upon request from the corresponding author.

References

  • Anand, K. S., & Dhikav, V. (2012). Hippocampus in health and disease: An overview. Annals of Indian Academy of Neurology, 15(4), 239–246. https://doi.org/10.4103/0972-2327.104323.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, N. D. (2019). State of the science on mild cognitive impairment (MCI). Cns Spectrums, 24(1), 78–87. https://doi.org/10.1017/s1092852918001347.

    Article  PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2001). Why Voxel-based morphometry should be used. Neuroimage, 14(6), 1238–1243.

    Article  CAS  PubMed  Google Scholar 

  • Ashburner, J., Good, C., & Friston, K. J. (2000). Tensor based morphometry. Neuroimage, 11(5), S465.

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300.

    Google Scholar 

  • Blaimer, M., Breuer, F., Mueller, M., Heidemann, R. M., Griswold, M. A., & Jakob, P. M. (2004). SMASH, SENSE, PILS, GRAPPA: How to choose the optimal method. Topics in Magnetic Resonance Imaging, 15(4), 223–236. https://doi.org/10.1097/01.rmr.0000136558.09801.dd.

    Article  PubMed  Google Scholar 

  • Bullmore, E. T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E., & Brammer, M. J. (1999). Global, Voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. Ieee Transactions on Medical Imaging, 18(1), 32–42. https://doi.org/10.1109/42.750253.

    Article  CAS  PubMed  Google Scholar 

  • Chauveau, L., Kuhn, E., Palix, C., Felisatti, F., Ourry, V., de La Sayette, V., Chételat, G., & de Flores, R. (2021). Medial temporal lobe subregional atrophy in aging and Alzheimer’s disease: A longitudinal study. Frontiers in aging neuroscience, 13.

  • Chong, F. P., Ng, K. Y., Koh, R. Y., & Chye, S. M. (2018). Tau proteins and Tauopathies in Alzheimer’s Disease. Cellular and Molecular Neurobiology, 38(5), 965–980. https://doi.org/10.1007/s10571-017-0574-1.

    Article  CAS  PubMed  Google Scholar 

  • Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.

    Article  CAS  PubMed  Google Scholar 

  • Denny, J. B. (2006). Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Current Neuropharmacology, 4(4), 293–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmane, A., Gulani, V., Griswold, M. A., & Seiberlich, N. (2012). Parallel MR imaging. Journal of Magnetic Resonance Imaging, 36(1), 55–72. https://doi.org/10.1002/jmri.23639.

    Article  PubMed  Google Scholar 

  • Dhiman, K., Villemagne, V. L., Eratne, D., Graham, P. L., Fowler, C. J., Bourgeat, P., Li, Q. X., Collins, S., Bush, A. I., & Rowe, C. C. (2020). Elevated levels of synaptic protein GAP-43 associate with brain tauopathy, atrophy and cognition in Alzheimer’s disease: Biomarkers (non‐neuroimaging)/Differential diagnosis. Alzheimer’s & Dementia, 16, e044098.

    Article  Google Scholar 

  • Dubois, B., Feldman, H. H., Jacova, C., Hampel, H., Molinuevo, J. L., Blennow, K., DeKosky, S. T., Gauthier, S., Selkoe, D., & Bateman, R. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet Neurology, 13(6), 614–629. https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(14)70090-0/fulltext.

  • Esquerda-Canals, G., Montoliu-Gaya, L., Güell-Bosch, J., & Villegas, S. (2017). Mouse models of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 57, 1171–1183. https://doi.org/10.3233/JAD-170045.

    Article  CAS  PubMed  Google Scholar 

  • Femminella, G. D., Thayanandan, T., Calsolaro, V., Komici, K., Rengo, G., Corbi, G., & Ferrara, N. (2018). Imaging and molecular mechanisms of Alzheimer’s disease: A review. International Journal of Molecular Sciences, 19(12), 3702.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fletcher, E., Knaack, A., Singh, B., Lloyd, E., Wu, E., Carmichael, O., & DeCarli, C. (2012). Combining boundary-based methods with tensor-based morphometry in the measurement of longitudinal brain change. IEEE Transactions on Medical Imaging, 32(2), 223–236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Freeborough, P. A., & Fox, N. C. (1998). Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. Journal of Computer Assisted Tomography, 22(5), 838–843.

    Article  CAS  PubMed  Google Scholar 

  • Granger, S. J., Colon-Perez, L., Larson, M. S., Bennett, I. J., Phelan, M., Keator, D. B., Janecek, J. T., Sathishkumar, M. T., Smith, A. P., McMillan, L., Greenia, D., Corrada, M. M., Kawas, C. H., & Yassa, M. A. (2023). Reduced structural connectivity of the medial temporal lobe including the perforant path is associated with aging and verbal memory impairment. Neurobiology of Aging, 121, 119–128. https://doi.org/10.1016/j.neurobiolaging.2022.10.012.

    Article  PubMed  Google Scholar 

  • Gunter, J., Bernstein, M., Borowski, B., Felmlee, J., Blezek, D., Mallozzi, R., Levy, J., Schuff, N., & Jack, C. (2005). Validation Testing of the MRI Calibration Phantom for the Alzheimer’s Disease Neuroimaging Initiative Study. Proceedings on International Society for Magnetic Resonance in Medicine, 14.

  • Gunter, J., Bernstein, M., Borowski, B., Felmlee, J., Blezek, D., Mallozzi, R., Levy, J., Schuff, N., & Jack, C. (2006). Validation testing of the MRI calibration phantom for the Alzheimer’s Disease Neuroimaging Initiative Study. Proceedings on International Society for Magnetic Resonance in Medicine, 14, 1088–1093.

    Google Scholar 

  • Gutman, B. A., Wang, Y., Yanovsky, I., Hua, X., Toga, A. W., Jack, C. R. Jr., Weiner, M. W., Thompson, P. M., & Alzheimer’s Disease Neuroimaging, I. (2015). Empowering imaging biomarkers of Alzheimer’s disease. Neurobiology of Aging, 36(Suppl 1), S69–80. https://doi.org/10.1016/j.neurobiolaging.2014.05.038.

    Article  CAS  PubMed  Google Scholar 

  • Holahan, M. R., Honegger, K. S., Tabatadze, N., & Routtenberg, A. (2007). GAP-43 gene expression regulates information storage. Learning & Memory, 14(6), 407–415. https://doi.org/10.1101/lm.581907.

    Article  CAS  Google Scholar 

  • Hua, X., Leow, A. D., Parikshak, N., Lee, S., Chiang, M. C., Toga, A. W., Jack, C. R. Jr., Weiner, M. W., & Thompson, P. M. (2008). Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: An MRI study of 676 AD, MCI, and normal subjects. Neuroimage, 43(3), 458–469. https://doi.org/10.1016/j.neuroimage.2008.07.013.

    Article  PubMed  Google Scholar 

  • Hua, X., Lee, S., Yanovsky, I., Leow, A. D., Chou, Y. Y., Ho, A. J., Gutman, B., Toga, A. W., JackJr, C. R., & Bernstein, M. A. (2009). Optimizing power to track brain degeneration in Alzheimer’s disease and mild cognitive impairment with tensor-based morphometry: An ADNI study of 515 subjects. Neuroimage, 48(4), 668–681.

    Article  PubMed  Google Scholar 

  • Hua, X., Gutman, B., Boyle, C. P., Rajagopalan, P., Leow, A. D., Yanovsky, I., Kumar, A. R., Toga, A. W., JackJr, C. R., & Schuff, N. (2011). Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry. Neuroimage, 57(1), 5–14.

    Article  PubMed  Google Scholar 

  • Hua, X., Hibar, D. P., Ching, C. R., Boyle, C. P., Rajagopalan, P., Gutman, B. A., Leow, A. D., Toga, A. W., Jack Jr, C. R., & Harvey, D. (2013). Unbiased tensor-based morphometry: Improved robustness and sample size estimates for Alzheimer’s disease clinical trials. Neuroimage, 66, 648–661.

    Article  PubMed  Google Scholar 

  • Hughes, C. P., Berg, L., Danziger, W., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. The British Journal of Psychiatry, 140(6), 566–572.

    Article  CAS  PubMed  Google Scholar 

  • Jack, C. R. Jr., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., Ward, J. L. W., Dale, C., Felmlee, A. M., Gunter, J. P., Hill, J. L., Killiany, D. L., Schuff, R., Fox-Bosetti, N., Lin, S., Studholme, C., & Weiner, C., M. W (2008). The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685–691. https://doi.org/10.1002/jmri.21049.

    Article  PubMed  Google Scholar 

  • Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., Kennedy, D., Schmitt, F., Brown, G., Macfall, J., Fischl, B., & Dale, A. (2006). Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. Neuroimage, 30(2), 436–443. https://doi.org/10.1016/j.neuroimage.2005.09.046.

    Article  PubMed  Google Scholar 

  • Kiktenko, A. I., Uranova, N. A., & Orlovskaia, D. D. (1995). [Mossy fibers of the hippocampus in Alzheimer’s disease]. Zh Nevrol Psikhiatr Im S S Korsakova, 95(1), 43–46. https://www.ncbi.nlm.nih.gov/pubmed/7778393 (Mshistye volokna gippokampa pri bolezni Al’tsgeimera.).

    CAS  PubMed  Google Scholar 

  • Kumar, D., Sharma, A., & Sharma, L. (2020). A comprehensive review of Alzheimer’s association with related proteins: Pathological role and therapeutic significance. Current Neuropharmacology, 18(8), 674–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan, G., Li, A., Liu, Z., Ma, S., & Guo, T. (2022). Presynaptic membrane protein dysfunction occurs prior to neurodegeneration and predicts faster cognitive decline. Alzheimers Dement. https://doi.org/10.1002/alz.12890.

    Article  PubMed  Google Scholar 

  • Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 13(4), 534–546.

    Article  Google Scholar 

  • Lech, R. K., & Suchan, B. (2013). The medial temporal lobe: Memory and beyond. Behavioural Brain Research, 254, 45–49. https://doi.org/10.1016/j.bbr.2013.06.009.

    Article  PubMed  Google Scholar 

  • Leow, A., Thompson, P., Hayashi, K., Bearden, C., Nicoletti, M., Monkul, S., Brambilla, P., Sassi, R., Mallinger, A., & Soares, J. (2005). Lithium effects on human brain structure mapped using longitudinal MRI. Society for Neuroscience, Washington, DC.

  • Leow, A. D., Yanovsky, I., Parikshak, N., Hua, X., Lee, S., Toga, A. W., Jack, C. R. Jr., Bernstein, M. A., Britson, P. J., Gunter, J. L., Ward, C. P., Borowski, B., Shaw, L. M., Trojanowski, J. Q., Fleisher, A. S., Harvey, D., Kornak, J., Schuff, N., Alexander, G. E., & Thompson, P. M. (2009). Alzheimer’s disease neuroimaging initiative: A one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition. Neuroimage, 45(3), 645–655. https://doi.org/10.1016/j.neuroimage.2009.01.004.

    Article  PubMed  Google Scholar 

  • Lu, Y., & for the Alzheimer’s Disease Neuroimaging. (2022). Cerebrospinal fluid growth-associated protein 43 levels in patients with progressive and stable mild cognitive impairment. Aging Clinical and Experimental Research, 34(10), 2399–2406. https://doi.org/10.1007/s40520-022-02202-z.

    Article  PubMed  Google Scholar 

  • Mantzavinos, V., & Alexiou, A. (2017). Biomarkers for Alzheimer’s Disease diagnosis. Current Alzheimer Research, 14(11), 1149–1154. https://doi.org/10.2174/1567205014666170203125942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson, M. P. (2004). Pathways towards and away from Alzheimer’s disease. Nature, 430(7000), 631–639. https://doi.org/10.1038/nature02621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., & Pike, B. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 356(1412), 1293–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: Methods and applications. Current Medical Imaging, 1(2), 105–113.

    Article  Google Scholar 

  • Milà-Alomà, M., Brinkmalm, A., Ashton, N. J., Kvartsberg, H., Shekari, M., Operto, G., Salvadó, G., Falcon, C., Gispert, J. D., Vilor-Tejedor, N., Arenaza-Urquijo, E. M., Grau-Rivera, O., Sala-Vila, A., Sanchez-Benavides, G., González-de-Echávarri, J. M., Minguillon, C., Fauria, K., Niñerola-Baizán, A., Perissinotti, A., & Suárez-Calvet, M. (2021). CSF Synaptic Biomarkers in the Preclinical Stage of Alzheimer Disease and Their Association With MRI and PET: A Cross-sectional Study. Neurology, 97(21), e2065-e2078. https://doi.org/10.1212/wnl.0000000000012853.

  • Morton, N. W., Schlichting, M. L., & Preston, A. R. (2020). Representations of common event structure in medial temporal lobe and frontoparietal cortex support efficient inference. Proceedings of the National Academy of Sciences, 117(47), 29338–29345.

  • Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C., Jagust, W., Trojanowski, J. Q., Toga, A. W., & Beckett, L. (2005a). The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics, 15(4), 869–877.

    Article  PubMed  Google Scholar 

  • Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., Trojanowski, J. Q., Toga, A. W., & Beckett, L. (2005b). Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s & Dementia, 1(1), 55–66.

    Article  Google Scholar 

  • Parhad, I. M., Oishi, R., & Clark, A. W. (1992). GAP-43 gene expression is increased in anterior horn cells of amyotrophic lateral sclerosis. Annals of Neurology, 31(6), 593–597. https://doi.org/10.1002/ana.410310605.

    Article  CAS  PubMed  Google Scholar 

  • Poulin, S. P., Dautoff, R., Morris, J. C., Barrett, L. F., & Dickerson, B. C. (2011). Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Research, 194(1), 7–13. https://doi.org/10.1016/j.pscychresns.2011.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Powel, J. (1988). Wechsler memory scale-revised: David A. Wechsler. New York: The Psychological Corporation. Harcourt Brace Jovanovich, Inc, 1987. 150 pp. Archives of Clinical Neuropsychology, 3(4), 397–403. https://doi.org/10.1016/0887-6177(88)90053-4.

  • PP, R. (1964). Human experimentation. Code of ethics of the world medical association. Declaration of Helsinki. British Medical Journal, 2(5402), 177–177.

    Article  Google Scholar 

  • Qiang, Q., Skudder-Hill, L., Toyota, T., Wei, W., & Adachi, H. (2022). CSF GAP-43 as a biomarker of synaptic dysfunction is associated with tau pathology in Alzheimer’s disease. Scientific Reports, 12(1), 17392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakers, G., McNamara, R. K., Lenox, R. H., & De Graan, P. (1999). Differential changes in the phosphorylation of the protein kinase C substrates myristoylated alanine-rich C kinase substrate and growth-associated protein-43/B-50 following Schaffer collateral long-term potentiation and long-term depression. Journal of Neurochemistry, 73(5), 2175–2183.

    Article  CAS  PubMed  Google Scholar 

  • Rao, Y. L., Ganaraja, B., Murlimanju, B. V., Joy, T., Krishnamurthy, A., & Agrawal, A. (2022). Hippocampus and its involvement in Alzheimer’s disease: A review. 3 Biotech, 12(2), 55. https://doi.org/10.1007/s13205-022-03123-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saal, K. A., Galter, D., Roeber, S., Bähr, M., Tönges, L., & Lingor, P. (2017). Altered expression of Growth Associated Protein-43 and rho kinase in human patients with Parkinson’s Disease. Brain Pathology, 27(1), 13–25. https://doi.org/10.1111/bpa.12346.

    Article  CAS  PubMed  Google Scholar 

  • Sandelius, Å., Portelius, E., Källén, Å., Zetterberg, H., Rot, U., Olsson, B., Toledo, J. B., Shaw, L. M., Lee, V. M., & Irwin, D. J. (2019). Elevated CSF GAP-43 is Alzheimer’s disease specific and associated with tau and amyloid pathology. Alzheimer’s & Dementia, 15(1), 55–64.

    Article  Google Scholar 

  • Shattuck, D. W., & Leahy, R. M. (2002). BrainSuite: An automated cortical surface identification tool. Medical Image Analysis, 6(2), 129–142.

    Article  PubMed  Google Scholar 

  • Shi, J., Stonnington, C. M., Thompson, P. M., Chen, K., Gutman, B., Reschke, C., Baxter, L. C., Reiman, E. M., Caselli, R. J., & Wang, Y. (2015). Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry. Neuroimage, 104, 1–20.

    Article  PubMed  Google Scholar 

  • Simrén, J., Leuzy, A., Karikari, T. K., Hye, A., Benedet, A. L., Lantero-Rodriguez, J., Mattsson-Carlgren, N., Schöll, M., Mecocci, P., Vellas, B., Tsolaki, M., Kloszewska, I., Soininen, H., Lovestone, S., Aarsland, D., Hansson, O., Rosa-Neto, P., Westman, E., Blennow, K., & Ashton, N. J. (2021). The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer’s disease. Alzheimers Dement, 17(7), 1145–1156. https://doi.org/10.1002/alz.12283.

    Article  CAS  PubMed  Google Scholar 

  • Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97.

    Article  CAS  PubMed  Google Scholar 

  • Soria Lopez, J. A., Gonzalez, H. M., & Leger, G. C. (2019). Alzheimer’s disease. Handbook of Clinical Neurology, 167, 231–255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3.

    Article  PubMed  Google Scholar 

  • Teipel, S., Drzezga, A., Grothe, M. J., Barthel, H., Chételat, G., Schuff, N., Skudlarski, P., Cavedo, E., Frisoni, G. B., & Hoffmann, W. (2015). Multimodal imaging in Alzheimer’s disease: Validity and usefulness for early detection. The Lancet Neurology, 14(10), 1037–1053.

    Article  PubMed  Google Scholar 

  • Toga, A. (1999). Brain warping (1,1th, ed.). Academic.

  • Vemuri, P., Senjem, M. L., Gunter, J. L., Lundt, E. S., Tosakulwong, N., Weigand, S. D., Borowski, B. J., Bernstein, M. A., Zuk, S. M., Lowe, V. J., Knopman, D. S., Petersen, R. C., Fox, N. C., Thompson, P. M., Weiner, M. W., & Jack, C. R. (2015). Accelerated vs. unaccelerated serial MRI based TBM-SyN measurements for clinical trials in Alzheimer’s disease. Neuroimage, 113, 61–69. https://doi.org/10.1016/j.neuroimage.2015.03.026.

    Article  PubMed  Google Scholar 

  • Wachinger, C., Salat, D. H., Weiner, M., Reuter, M., & Initiative, A. (2016). Whole-brain analysis reveals increased neuroanatomical asymmetries in dementia for hippocampus and amygdala. Brain, 139(12), 3253–3266. s. D. N.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiler, M., Agosta, F., Canu, E., Copetti, M., Magnani, G., Marcone, A., Pagani, E., Balthazar, M. L. F., Comi, G., & Falini, A. (2015). Following the spreading of brain structural changes in alzheimer’s disease: A longitudinal, multimodal MRI study. Journal of Alzheimer’s Disease, 47(4), 995–1007.

    Article  PubMed  Google Scholar 

  • Wenk, G. (2003). Neuropathologic changes in Alzheimer’s Disease. The Journal of Clinical Psychiatry 64 Suppl, 9, 7–10.

    Google Scholar 

  • West, M. J., Coleman, P. D., Flood, D. G., & Troncoso, J. C. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet, 344(8925), 769–772. https://doi.org/10.1016/s0140-6736(94)92338-8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Lyu, D., Jia, J., & Initiative, A. D. N. (2021). The trajectory of Cerebrospinal Fluid Growth-Associated protein 43 in the Alzheimer’s Disease Continuum: A longitudinal study. Journal of Alzheimer’s Disease(Preprint), 1–12.

Download references

Acknowledgements

The authors would like to thank Dr. Mahsa Mayeli for her technical and intellectual support.

Funding

No funding was provided for this work.

Author information

Authors and Affiliations

Authors

Contributions

H.S, A.Sh, A.Sa, and H.A participated in data cleaning and full analysis. H.S also supervised the whole work process. A.Sa, H.A and A.Sh wrote the initial manuscript text, and participated in data cleaning and preparation of tables. B.F and M.M.H participated in data acquisition and cleaning. A.M and S.S.B participated in preparing the final version of manuscript. A.Sh revised the final version of manuscript, provided Figure 2 and Table 4.

Corresponding author

Correspondence to Ali Shushtari.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedmirzaei, H., Salmannezhad, A., Ashayeri, H. et al. Growth-Associated Protein 43 and Tensor-Based Morphometry Indices in Mild Cognitive Impairment. Neuroinform (2024). https://doi.org/10.1007/s12021-024-09663-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12021-024-09663-9

Keywords

Navigation