Skip to main content
Log in

An Algorithm Based on a Cable-Nernst Planck Model Predicting Synaptic Activity throughout the Dendritic Arbor with Micron Specificity

  • Research
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Recent technological advances have enabled the recording of neurons in intact circuits with a high spatial and temporal resolution, creating the need for modeling with the same precision. In particular, the development of ultra-fast two-photon microscopy combined with fluorescence-based genetically-encoded Ca2+-indicators allows capture of full-dendritic arbor and somatic responses associated with synaptic input and action potential output. The complexity of dendritic arbor structures and distributed patterns of activity over time results in the generation of incredibly rich 4D datasets that are challenging to analyze (Sakaki et al. in Frontiers in Neural Circuits 14:33, 2020). Interpreting neural activity from fluorescence-based Ca2+ biosensors is challenging due to non-linear interactions between several factors influencing intracellular calcium ion concentration and its binding to sensors, including the ionic dynamics driven by diffusion, electrical gradients and voltage-gated conductances. To investigate those dynamics, we designed a model based on a Cable-like equation coupled to the Nernst-Planck equations for ionic fluxes in electrolytes. We employ this model to simulate signal propagation and ionic electrodiffusion across a dendritic arbor. Using these simulation results, we then designed an algorithm to detect synapses from Ca2+ imaging datasets. We finally apply this algorithm to experimental Ca2+-indicator datasets from neurons expressing jGCaMP7s (Dana et al. in Nature Methods 16:649–657, 2019), using full-dendritic arbor sampling in vivo in the Xenopus laevis optic tectum using fast random-access two-photon microscopy. Our model reproduces the dynamics of visual stimulus-evoked jGCaMP7s-mediated calcium signals observed experimentally, and the resulting algorithm allows prediction of the location of synapses across the dendritic arbor. Our study provides a way to predict synaptic activity and location on dendritic arbors, from fluorescence data in the full dendritic arbor of a neuron recorded in the intact and awake developing vertebrate brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NMDA:

N-methyl D-aspartate

VGCC:

Voltage-gated calcium channels

References

  • Aggarwal, A., Liu, R., Chen, Y., Ralowicz, A. J., Bergerson, S. J., Tomaska, F., Hanson, T. L., Hasseman, J. P., Reep, D., Tsegaye, G., Yao, P., Ji, X., Kloos, M., Walpita, D., Patel, R., Mohr, M. A., Tilberg, P. W., Mohar, B., Looger, L. L., ... &  Podgorski, K. (2022). Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission. bioRxiv. https://doi.org/10.1101/2022.02.13.480251

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell. Garland Science.

    Google Scholar 

  • Basak, R., & Narayanan, R. (2018). Active dendrites regulate the spatiotemporal spread of signaling microdomains. PLoS Comp Bio, 14, e1006485.

    Article  Google Scholar 

  • Bono, J., & Clopath, C. (2017). Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nature Communications, 8(1), 706.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bower, J. M., & Beeman, D. (1998). The Book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed.). Springer-Verlag.

    Book  Google Scholar 

  • Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94(5), 3637–3642.

    Article  PubMed  Google Scholar 

  • Carnevale, T., & Hines, M. (2006). The NEURON Book. Cambridge University Press.

    Book  Google Scholar 

  • Cartailler, J., Schuss, Z., & Holcman, D. (2017). Electrostatics of non-neutral biological microdomains. Science and Reports, 7(1), 11269.

    Article  CAS  Google Scholar 

  • Dana, H., Sun, Y., Mohar, B., Hulse, B. K., Kerlin, A. M., Hasseman, J. P., Tsegaye, G., Tsang, A., Wong, A., Patel, R., Macklin, J. J., Chen, Y., Konnerth, A., Jayaraman, V., Looger, L. L., Schreiter, E. R., Svoboda, K., & Kim, D. S. (2019). High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nature Methods, 16, 649–657.

    Article  CAS  PubMed  Google Scholar 

  • Demas, J. A., Payne, H., & Cline, H. T. (2012). Vision drives correlated activity without patterned spontaneous activity in developing Xenopus retina. Developmental Neurobiology, 72, 537–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou, Y., Lin, Y., Wang, T. Y., Wang, X. Y., Jia, Y., & l., & Zhao, C. P. (2020). The CAG promoter maintains high-level transgene expression in HEK293 cells. FEBS Open Bio, 11(1), 95–104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engert, F., Tao, H. W., Zhang, L. I., & Poo, M. M. (2002). Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons. Nature, 419(6906), 470–475.

    Article  CAS  PubMed  Google Scholar 

  • Galtier, N., & Guerrier, C. (2022). Sinaps: a Python library to simulate voltage dynamics and ionic electrodiffusion in neurons. Journal of Open Source Software, 7(73), 4012.

    Article  Google Scholar 

  • Gonzalez, K. C., Losonczy, A., & Negrean, A. (2022). Dendritic excitability and synaptic plasticity in vitro and in vivo. Neuroscience, 489, 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Gross, G. G., Junge, J. A., Mora, R. J., Kwon, H. B., Olson, C. A., Takahashi, T. T., Liman, E. R., Ellis-Davies, G. C., McGee, A. W., Sabatini, B. L., Roberts, R. W., & Arnold, D. B. (2013). Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron, 78(6), 971–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrier, C., & Holcman, D. (2017). Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology. Journal of Computational Physics, 340, 617–638.

    Article  CAS  Google Scholar 

  • Haas, K., Sin, W. C., Javaherian, A., Li, Z., & Cline, H. T. (2001). Single-cell electroporation for gene transfer in vivo. Neuron, 29(3), 583–591.

    Article  CAS  PubMed  Google Scholar 

  • Harkin, E. F., Béïque, J. C., & Naud, R. (2022). A user’s guide to generalized integrate-and-fire models. Advances in Experimental Medicine and Biology, 1359, 69–86.

    Article  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holcman, D., & Yuste, R. (2015). The new nanophysiology: Regulation of ionic flow in neuronal subcompartments. Nature Reviews Neuroscience, 16, 685–692.

    Article  CAS  PubMed  Google Scholar 

  • Honda, M., Urakubo, H., Tanaka, K., & Kuroda, S. (2011). Analysis of development of direction selectivity in retinotectum by a neural circuit model with spike timing-dependent plasticity. Journal of Neuroscience, 31(4), 1516–1527.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience - the geometry of excitability and bursting. The MIT Press.

    Google Scholar 

  • Kazemipour, A., Novak, O., Flickinger, D., Marvin, J. S., Abdelfattah, M., King, J., Borden, P. M., Kim, J. J., Abdullatif, S., Deal, P. E., Miller, E. W., Schreiter, E. R., Druckmann, S., Svoboda, K., Looger, L. L., & Podgorski, K. (2019). Kilohertz frame-rate two-photon tomography. Nature Methods., 16(8), 778–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keener, J. P., Hoppensteadt, F. C., & Rinzel, J. (1981). Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM Journal on Applied Mathematics, 41(3), 503–517.

    Article  Google Scholar 

  • Kim, J. H., Lee, S. R., Li, L. H., Park, H. J., Lee, K. Y., Kim, M. K., Shin, B. A., & Choi, S. Y. (2011). High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One, 6, e18556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby, B. J. (2010). Micro- and nanoscale fluid mechanics. Cambridge University Press.

    Google Scholar 

  • Koch, C. (1999). Biophysics of computation, information processing in single neurons. Oxford University Press.

    Google Scholar 

  • Laviv, T., Kim, B. B., Chu, J., Lam, A. J., Lin, M. Z., & Yasuda, R. (2016). Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins. Nature Methods, 13(12), 989–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavzin, M., Rapoport, S., Polsky, A., Garion, L., & Schiller, J. (2012). Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature, 490(7420), 397–401.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Erisir, A., & Cline, H. (2011). In vivo time-lapse imaging and serial section electron microscopy reveal developmental synaptic rearrangements. Neuron, 69(2), 273–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • London, M., & Häusser, M. (2005). Dendritic computation. Annual Review of Neuroscience, 28, 503–532.

    Article  CAS  PubMed  Google Scholar 

  • Lopreore, C. L., Bartol, T. M., Coggan, J. S., Keller, D. X., Sosinsky, G. E., Ellisman, M. H., & Sejnowski, T. J. (2008). Computational modeling of three-dimensional electrodiffusion in biological systems: Application to the node of ranvier. Biophysical Journal, 95(6), 2624–2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, B., Holst, M. J., McCammon, J. A., & Zhou, Y. C. (2010). Poisson-Nernst Planck equations for simulating biomolecular diffusion-reaction processes. I. finite element solutions. Journal of Computational Physics, 229, 6979–6994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mory, Y., Fishman, G. I., & Peskin, C. S. (2008). Ephaptic conduction in a cardiac strand model with 3D electrodiffusion. Proceedings of the National Academy of Sciences of the United States of America, 105, 6463–6468.

    Article  Google Scholar 

  • Nernst, W. (1888). Zur kinetik der in lösung befindlichen körper. Zeitschr f Phys Chem, 2, 613–637.

    Article  Google Scholar 

  • Øyehaug, L., Østby, I., Lloyd, C. M., Omholt, S. W., & Gaute, T. E. (2012). Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. Journal of Computational Neuroscience, 32(1), 147–165.

    Article  PubMed  Google Scholar 

  • Pods, J., Schonke, J., & Bastian, P. (2013). Electrodiffusion models of neurons and extracellular space using the Poisson-Nernst-Planck equations: Numerical simulation of the intra- and extracellular potential for an axon model. Biophysical Journal, 105(1), 242–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, N., & Sejnowski, T. J. (1989). An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biological Cybernetics, 62, 1–15.

    Article  Google Scholar 

  • Redmond, L., & Ghosh, A. (2005). Regulation of dendritic development by calcium signaling. Cell Calcium, 37(5), 411–416.

    Article  CAS  PubMed  Google Scholar 

  • Sætra, M. J., Einevoll, G. T., & Halnes, G. (2020). An electrodiffusive, ion conserving pinsky-rinzel model with homeostatic mechanisms. PLOS Computational Biology, 16(4), 1–36.

    Article  Google Scholar 

  • Sakaki, K. D. R., Podgorski, K., Dellazizzo Toth, T. A., Coleman, P., & Haas, K. (2020). Comprehensive imaging of sensory-evoked activity of entire neurons within the awake developing brain using ultrafast aod-based random-access two-photon microscopy. Frontiers in Neural Circuits, 14, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Savtchenko, L. P., Ming Poo, M., & Rusakov, D. A. (2017). Electrodiffusion phenomena in neuroscience: a neglected companion. Nature Reviews Neuroscience, 18, 598–612.

    Article  CAS  PubMed  Google Scholar 

  • Segal, M., & Korkotian, E. (2014). Endoplasmic reticulum calcium stores in dendritic spines. Frontiers in Neuroanatomy, 8, 64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Solbra, A., Bergersen, A. W., van den Brink, J., Malthe-Sørenssen, A., Einevoll, G. T., & Halnes, G. (2018). A kirchhoff-nernst-planck framework for modeling large scale extracellular electrodiffusion surrounding morphologically detailed neurons. PLOS Computational Biology, 14(10), 1–26.

    Article  Google Scholar 

  • Stinchcombe, A. R., Mory, Y., & Peskin, C. S. (2016). Well-posed treatment of space-charge layers in the electroneutral limit of electrodiffusion. Communications on Pure and Applied Mathematics, 69(12), 2221–2249.

    Article  Google Scholar 

  • Waters, J., Schaefer, A., & Sakmann, B. (2005). Backpropagating action potentials in neurons: Measurement, mechanisms and potential functions. Progress in Biophysics and Molecular Biology, 87(1), 145–170.

    Article  PubMed  Google Scholar 

  • Wu, G. Y., Malinow, R., & Cline, H. T. (1996). Maturation of a central glutamatergic synapse. Science, 274(5289), 972–976.

    Article  CAS  PubMed  Google Scholar 

  • Xylouris, K., Queisser, G., & Wittum, G. (2010). A three-dimensional mathematical model of active signal processing in axons. Computer Visualization Science, 13, 409–418.

    Article  Google Scholar 

Download references

Funding

Financial support from CIHR grant #FDN-148468, AccelNet International Network for Bio-Inspired Computing and the Fyssen foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

KH designed the project. CG and NG built the model and did the simulations. TDT performed experiments. CG, TDT and KH wrote the main manuscript text. TDT and CG prepared Fig. 1. NG prepared Figs. 2, 3, 4, and 5. All authors reviewed the manuscript.

Corresponding author

Correspondence to Claire Guerrier.

Ethics declarations

Ethics Approval

The animal study was reviewed and approved by the UBC Animal Care Committee and was in accordance with the Canadian Council on Animal Care (CCAC) guidelines. Animal Care Number: A190297.

Consent to Participate

Not applicable.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrier, C., Dellazizzo Toth, T., Galtier, N. et al. An Algorithm Based on a Cable-Nernst Planck Model Predicting Synaptic Activity throughout the Dendritic Arbor with Micron Specificity. Neuroinform 21, 207–220 (2023). https://doi.org/10.1007/s12021-022-09609-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-022-09609-z

Keywords

Navigation