Alexandroni, G., Podolsky, Y., Greenspan, H., Remez, T., Litany, O., Bronstein, A., & Giryes, R. (2017, September). White matter fiber representation using continuous dictionary learning. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 566–574). Springer, Cham.
Bassett, D. S., & Bullmore, E. T. (2017). Small-world brain networks revisited. The Neuroscientist, 23(5), 499–516.
Article
Google Scholar
Bertò, G., Bullock, D., Astolfi, P., Hayashi, S., Zigiotto, L., Annicchiarico, L., & Olivetti, E. (2021). Classifyber, a robust streamline-based linear classifier for white matter bundle segmentation. NeuroImage, 224, 117402.
Article
Google Scholar
Batchelor, P. G., Calamante, F., Tournier, J. D., Atkinson, D., Hill, D. L. G., & Connelly, A. (2006). Quantification of the shape of fiber tracts. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 55(4), 894–903.
CAS
Article
Google Scholar
Brun, A., Knutsson, H., Park, H. J., Shenton, M. E., & Westin, C. F. (2004, September). Clustering fiber traces using normalized cuts. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 368–375). Springer, Berlin, Heidelberg.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.
CAS
Article
Google Scholar
Bin, Y., Yang, Y., Shen, F., Xie, N., Shen, H. T., & Li, X. (2018). Describing video with attention-based bidirectional LSTM. IEEE Transactions on Cybernetics, 49(7), 2631–2641.
Article
Google Scholar
Cabeen, R. P., Toga, A. W., & Laidlaw, D. H. (2021). Tractography Processing with the Sparse Closest Point Transform. Neuroinformatics, 19(2), 367–378
Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P., Sporns, O., Do, K. Q., & Hagmann, P. (2012). Mapping the human connectome at multiple scales with diffusion spectrum MRI. Journal of Neuroscience Methods, 203(2), 386–397.
Article
Google Scholar
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
Chung, M. K., Adluru, N., Lee, J. E., Lazar, M., Lainhart, J. E., & Alexander, A. L. (2010). Cosine series representation of 3D curves and its application to white matter fiber bundles in diffusion tensor imaging. Statistics and Its Interface, 3(1), 69.
Article
Google Scholar
Clayden, J. D., Storkey, A. J., & Bastin, M. E. (2007). A probabilistic model-based approach to consistent white matter tract segmentation. IEEE Transactions on Medical Imaging, 26(11), 1555–1561.
Article
Google Scholar
Colon-Perez, L. M., Triplett, W., Bohsali, A., Corti, M., Nguyen, P. T., Patten, C., & Price, C. C. (2016). A majority rule approach for region-of-interest-guided streamline fiber tractography. Brain Imaging and Behavior, 10(4), 1137–1147.
CAS
Article
Google Scholar
Corouge, I., Gouttard, S., & Gerig, G. (2004, April). Towards a shape model of white matter fiber bundles using diffusion tensor MRI. In 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821) (pp. 344–347). IEEE.
Gao, L., Guo, Z., Zhang, H., Xu, X., & Shen, H. T. (2017). Video captioning with attention-based LSTM and semantic consistency. IEEE Transactions on Multimedia, 19(9), 2045–2055.
Article
Google Scholar
Garyfallidis, E., Brett, M., Correia, M. M., Williams, G. B., & Nimmo-Smith, I. (2012). Quickbundles, a method for tractography simplification. Frontiers in Neuroscience, 6, 175.
Article
Google Scholar
Gori, P., Colliot, O., Marrakchi-Kacem, L., Worbe, Y., Fallani, F. D. V., Chavez, M., & Durrleman, S. (2016). Parsimonious approximation of streamline trajectories in white matter fiber bundles. IEEE Transactions on Medical Imaging, 35(12), 2609–2619.
Article
Google Scholar
Guevara, P., Duclap, D., Poupon, C., Marrakchi-Kacem, L., Fillard, P., Le Bihan, D., & Mangin, J. F. (2012). Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. NeuroImage, 61(4), 1083–1099.
CAS
Article
Google Scholar
Gupta, V., Thomopoulos, S. I., Corbin, C. K., Rashid, F., & Thompson, P. M. (2018, April). Fibernet 2.0: an automatic neural network based tool for clustering white matter fibers in the brain. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 708–711). IEEE.
Gupta, V., Thomopoulos, S. I., Rashid, F. M., & Thompson, P. M. (2017, September). FiberNET: An ensemble deep learning framework for clustering white matter fibers. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 548–555). Springer, Cham.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
CAS
Article
Google Scholar
Jianu, R., Demiralp, C., & Laidlaw, D. (2009). Exploring 3D DTI fiber tracts with linked 2D representations. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1449–1456.
Article
Google Scholar
Jones, D. K. (2010). Diffusion mri. Oxford University Press.
Google Scholar
Jones, D. K., & Pierpaoli, C. (2005). Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 53(5), 1143–1149.
Article
Google Scholar
Kumar, K., Siddiqi, K., & Desrosiers, C. (2019). White matter fiber analysis using kernel dictionary learning and sparsity priors. Pattern Recognition, 95, 83–95.
Article
Google Scholar
Labra, N., Guevara, P., Duclap, D., Houenou, J., Poupon, C., Mangin, J. F., & Figueroa, M. (2017). Fast automatic segmentation of white matter streamlines based on a multi-subject bundle atlas. Neuroinformatics, 15(1), 71–86.
Article
Google Scholar
Lam, P. D. N., Belhomme, G., Ferrall, J., Patterson, B., Styner, M., & Prieto, J. C. (2018, March). TRAFIC: fiber tract classification using deep learning. In Medical Imaging 2018: Image Processing (Vol. 10574, p. 1057412). International Society for Optics and Photonics.
Le, Q., & Mikolov, T. (2014, June). Distributed representations of sentences and documents. In International conference on machine learning (pp. 1188–1196). PMLR.
Legarreta, J. H., Petit, L., Rheault, F., Theaud, G., Lemaire, C., Descoteaux, M., & Jodoin, P. M. (2021). Filtering in Tractography using Autoencoders (FINTA). Medical Image Analysis, 102126.
Liu, F., Feng, J., Chen, G., Wu, Y., Hong, Y., Yap, P. T., & Shen, D. (2019, October). DeepBundle: fiber bundle parcellation with graph convolution neural networks. In International Workshop on Graph Learning in Medical Imaging (pp. 88–95). Springer, Cham.
Maddah, M., Crimson, W. E. L., & Warfield, S. K. (2006, April). Statistical modeling and EM clustering of white matter fiber tracts. In 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006. (pp. 53–56). IEEE.
Maddah, M., Mewes, A. U., Haker, S., Grimson, W. E. L., & Warfield, S. K. (2005, October). Automated atlas-based clustering of white matter fiber tracts from DTMRI. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 188–195). Springer, Berlin, Heidelberg.
Maier-Hein, K. H. et al. (2015). Tractography Challenge ISMRM 2015 Data. https://doi.org/10.5281/zenodo.572345
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111–3119).
Olivetti, E., Nguyen, T. B., & Garyfallidis, E. (2012, July). The approximation of the dissimilarity projection. In 2012 Second International Workshop on Pattern Recognition in NeuroImaging (pp. 85–88). IEEE.
Oota, S. R., Rowtula, V., Gupta, M., & Bapi, R. S. (2019, July). StepEncog: A convolutional LSTM autoencoder for near-perfect fMRI encoding. In 2019 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE.
Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42.
Article
Google Scholar
Sundermeyer, M., Schlüter, R., & Ney, H. (2012). LSTM neural networks for language modeling. In Thirteenth annual conference of the international speech communication association.
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104–3112).
Tournier, J. D., Yeh, C. H., Calamante, F., Cho, K. H., Connelly, A., & Lin, C. P. (2008). Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data. NeuroImage, 42(2), 617–625.
Article
Google Scholar
Ugurlu, D., Firat, Z., Türe, U., & Unal, G. (2018). Neighborhood resolved fiber orientation distributions (NRFOD) in automatic labeling of white matter fiber pathways. Medical Image Analysis, 46, 130–145.
Article
Google Scholar
Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).
Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil, K., & Wu-Minn HCP Consortium. (2013). The WU-Minn human connectome project: An overview. NeuroImage, 80, 62–79.
Article
Google Scholar
Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R. L., & Mori, S. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage, 36(3), 630–644.
Article
Google Scholar
Wassermann, D., Makris, N., Rathi, Y., Shenton, M., Kikinis, R., Kubicki, M., & Westin, C. F. (2016). The white matter query language: A novel approach for describing human white matter anatomy. Brain Structure and Function, 221(9), 4705–4721.
Article
Google Scholar
Wasserthal, J., Neher, P., & Maier-Hein, K. H. (2018). TractSeg-Fast and accurate white matter tract segmentation. NeuroImage, 183, 239–253.
Article
Google Scholar
Wolf, T., Chaumond, J., Debut, L., Sanh, V., Delangue, C., Moi, A., ... & Rush, A. M. (2020, October). Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (pp. 38–45).
Wu, Y., Hong, Y., Ahmad, S., Lin, W., Shen, D., Yap, P. T., & UNC/UMN Baby Connectome Project Consortium. (2020, October). Tract dictionary learning for fast and robust recognition of fiber bundles. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 251–259). Springer, Cham.
Yeh, F. C., Badre, D., & Verstynen, T. (2016). Connectometry: A statistical approach harnessing the analytical potential of the local connectome. NeuroImage, 125, 162–171.
Article
Google Scholar
Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J., & Fischl, B. (2011). Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics, 5, 23.
Article
Google Scholar
Zhang, S., Correia, S., & Laidlaw, D. H. (2008). Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method. IEEE Transactions on Visualization and Computer Graphics, 14(5), 1044–1053.
Article
Google Scholar
Zhang, F., Karayumak, S. C., Hoffmann, N., Rathi, Y., Golby, A. J., & O’Donnell, L. J. (2020). Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation. Medical Image Analysis, 65, 101761.
Article
Google Scholar
Zhong, S., Chen, Z., & Egan, G. (2020). Auto-encoded latent representations of white matter streamlines. In 28th Virtual Conference & Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM). International Society for Magnetic Resonance in Medicine (Vol. 8).
Ziyan, U., Sabuncu, M. R., Grimson, W. E. L., & Westin, C. F. (2009). Consistency clustering: A robust algorithm for group-wise registration, segmentation and automatic atlas construction in diffusion MRI. International Journal of Computer Vision, 85(3), 279–290.
Article
Google Scholar