Skip to main content

Advertisement

Log in

The efficiency of stem cell differentiation into functional beta cells for treating insulin-requiring diabetes: Recent advances and current challenges

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

In recent years, the potential of stem cells (SCs) to differentiate into various types of cells, including β-cells, has led to a significant boost in development. The efficiency of this differentiation process and the functionality of the cells post-transplantation are crucial factors for the success of stem cell therapy in diabetes. Herein, this article reviews the current advances and challenges faced by stem cell differentiation into functional β-cells for diabetes treatment. In vitro, researchers have sought to enhance the differentiation efficiency of functional β-cells by mimicking the normal pancreatic development process, using gene manipulation, pharmacological and culture conditions stimulation, three-dimensional (3D) and organoid culture, or sorting for functional β-cells based on mature islet cell markers. Furthermore, in vivo studies have also looked at suitable transplantation sites, the enhancement of the transplantation microenvironment, immune modulation, and vascular function reconstruction to improve the survival rate of functional β-cells, thereby enhancing the treatment of diabetes. Despite these advancements, developing stem cells to produce functional β-cells for efficacious diabetes treatment is a continuous research endeavor requiring significant multidisciplinary collaboration, for the stem-cell-derived beta cells to evolve into an effective cellular therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SCs:

stem cells

IPCs:

insulin-producing cells

ES:

embryonic stem cells

NT-ESs:

nuclear transfer embryonic stem cells

CB-SC:

cord blood stem cells

UCBMSCs:

Umbilical cord blood mesenchymal stem cells

hAFSCs:

human amniotic fluid stem cells

ASCs:

adipose tissue-derived stem cells

ICAs:

islet-like cell aggregates

MDSPCs:

Muscle-derived stem/progenitor cells

iPSCs:

induced pluripotent stem cells

hAECs:

human amniotic epithelial cells

hESC:

human embryonic stem cell

hMSCs:

human marrow stromal cells

EGF:

epidermal growth factor

References

  1. L. Wang, W. Peng, Z. Zhao, M. Zhang, Z. Shi, Z. Song, X. Zhang, C. Li, Z. Huang, X. Sun, L. Wang, M. Zhou, J. Wu, Y. Wang, Prevalence and treatment of diabetes in China, 2013–2018. JAMA 326, 2498–2506 (2021). https://doi.org/10.1001/jama.2021.22208

    Article  PubMed  PubMed Central  Google Scholar 

  2. W. Bielka, A. Przezak, P. Molęda, E. Pius-Sadowska, B. Machaliński, Double diabetes-when type 1 diabetes meets type 2 diabetes: definition, pathogenesis and recognition. Cardiovasc. Diabetol. 23, 62 (2024). https://doi.org/10.1186/s12933-024-02145-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. M. Lipsett, R. Aikin, M. Castellarin, S. Hanley, A.M. Jamal, S. Laganiere, L. Rosenberg, Islet neogenesis: a potential therapeutic tool in type 1 diabetes. Int. J. Biochem. Cell Biol. 38, 498–503 (2006). https://doi.org/10.1016/j.biocel.2005.08.022

    Article  CAS  PubMed  Google Scholar 

  4. A. Cañibano-Hernández, L. Sáenz Del Burgo, A. Espona-Noguera, J. Ciriza, J.L. Pedraz, Current advanced therapy cell-based medicinal products for type-1-diabetes treatment. Int. J. Pharm. 543, 107–120 (2018). https://doi.org/10.1016/j.ijpharm.2018.03.041

    Article  CAS  PubMed  Google Scholar 

  5. J.B. Sneddon, Q. Tang, P. Stock, J.A. Bluestone, S. Roy, T. Desai, M. Hebrok, Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 22, 810–823 (2018). https://doi.org/10.1016/j.stem.2018.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. G. Pan, Y. Mu, L. Hou, J. Liu, Examining the therapeutic potential of various stem cell sources for differentiation into insulin-producing cells to treat diabetes. Annales d’endocrinologie 80, 47–53 (2019). https://doi.org/10.1016/j.ando.2018.06.1084

    Article  PubMed  Google Scholar 

  7. J. Shen, Y. Cheng, Q. Han, Y. Mu, W. Han, Generating insulin-producing cells for diabetic therapy: existing strategies and new development. Ageing Res. Rev. 12, 469–478 (2013). https://doi.org/10.1016/j.arr.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  8. T. Farooq, K. Rehman, A. Hameed, M.S.H. Akash, Stem cell therapy and Type 1 Diabetes Mellitus: Treatment strategies and future perspectives. Adv. Exp. Med. Biol. 1084, 95–107 (2019). https://doi.org/10.1007/5584_2018_195

    Article  CAS  PubMed  Google Scholar 

  9. H.S. Jun. Cell replacement and regeneration therapy for diabetes. Korean Diabetes J. 34, 77–83 (2010). https://doi.org/10.4093/kdj.2010.34.2.77

    Article  PubMed  PubMed Central  Google Scholar 

  10. S. Chen, K. Du, C. Zou, Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell. Res. Ther. 11, 275 (2020). https://doi.org/10.1186/s13287-020-01793-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. A. Citro, A. Neroni, C. Pignatelli, F. Campo, M. Policardi, M. Monieri, S. Pellegrini, E. Dugnani, F. Manenti, M.C. Maffia, L. Valla, E. Kemter, I. Marzinotto, C. Olgasi, A. Cucci, A. Follenzi, V. Lampasona, E. Wolf, L. Piemonti, Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes. Nat. Commun. 14, 878 (2023). https://doi.org/10.1038/s41467-023-36582-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. Kim, Y. Gu, M. Ishii, M. Fujimiya, M. Qi, N. Nakamura, T. Yoshikawa, S. Sumi, K. Inoue, In vivo functioning and transplantable mature pancreatic islet-like cell clusters differentiated from embryonic stem cell. Pancreas 27, e34–e41 (2003). https://doi.org/10.1097/00006676-200308000-00021

    Article  PubMed  Google Scholar 

  13. A. Rezania, J.E. Bruin, M.J. Riedel, M. Mojibian, A. Asadi, J. Xu, R. Gauvin, K. Narayan, F. Karanu, J.J. O’Neil, Z. Ao, G.L. Warnock, T.J. Kieffer, Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 61, 2016–2029 (2012). https://doi.org/10.2337/db11-1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J.J. Heit, S.K. Kim, Embryonic stem cells and islet replacement in diabetes mellitus. Pediatr. Diabetes 5, 5–15 (2004). https://doi.org/10.1111/j.1399-543X.2004.00074.x

    Article  PubMed  Google Scholar 

  15. L. Sui, N. Danzl, S.R. Campbell, R. Viola, D. Williams, Y. Xing, Y. Wang, N. Phillips, G. Poffenberger, B. Johannesson, J. Oberholzer, A.C. Powers, R.L. Leibel, X. Chen, M. Sykes, D. Egli, Beta-cell replacement in mice using human Type 1 Diabetes nuclear transfer embryonic stem cells. Diabetes 67, 26–35 (2018). https://doi.org/10.2337/db17-0120

    Article  CAS  PubMed  Google Scholar 

  16. P. Torre P., A.I. Flores, Current status and future prospects of perinatal stem cells. Genes. 12 (2020). https://doi.org/10.3390/genes12010006

  17. K.C. Chao, K.F. Chao, Y.S. Fu, S.H. Liu, Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3, e1451 (2008). https://doi.org/10.1371/journal.pone.0001451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Sarang, C. Viswanathan, Umbilical cord derived mesenchymal stem cells useful in insulin production - another opportunity in cell therapy. Int. J. Stem Cells 9, 60–69 (2016). https://doi.org/10.15283/ijsc.2016.9.1.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S.S. Kadam, M. Sudhakar, P.D. Nair, R.R. Bhonde, Reversal of experimental diabetes in mice by transplantation of neo-islets generated from human amnion-derived mesenchymal stromal cells using immuno-isolatory macrocapsules. Cytotherapy 12, 982–991 (2010). https://doi.org/10.3109/14653249.2010.509546

    Article  CAS  PubMed  Google Scholar 

  20. Y. Zhao, B. Lin, M. Dingeldein, C. Guo, D. Hwang, M.J. Holterman, New type of human blood stem cell: a double-edged sword for the treatment of type 1 diabetes. Transl. Res. 155, 211–216 (2010). https://doi.org/10.1016/j.trsl.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  21. M. El-Sherbiny, M.A. Eladl, A.V. Ranade, M. Guimei, H. Gabr, Functional beta-cells derived from umbilical cord blood mesenchymal stem cells for curing rats with streptozotocin-induced diabetes mellitus. Singapore Med. J. 61, 39–45 (2020). https://doi.org/10.11622/smedj.2019120

    Article  PubMed  PubMed Central  Google Scholar 

  22. X.P. Mu, L.Q. Ren, H.W. Yan, X.M. Zhang, T.M. Xu, A.H. Wei, J.L. Jiang, Enhanced differentiation of human amniotic fluid-derived stem cells into insulin-producing cells in vitro. J. Diabetes Investig. 8, 34–43 (2017). https://doi.org/10.1111/jdi.12544

    Article  CAS  PubMed  Google Scholar 

  23. C.N. Street, S. Sipione, L. Helms, T. Binette, R.V. Rajotte, R.C. Bleackley, G.S. Korbutt, Stem cell-based approaches to solving the problem of tissue supply for islet transplantation in type 1 diabetes. Int. J. Biochem. Cell Biol. 36, 667–683 (2004). https://doi.org/10.1016/j.biocel.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  24. M. Li, S. Ikehara, Bone marrow stem cell as a potential treatment for diabetes. J. Diabetes Res. 2013, 329596 (2013). https://doi.org/10.1155/2013/329596

    Article  PubMed  PubMed Central  Google Scholar 

  25. E.M. Kang, P.P. Zickler, S. Burns, S.M. Langemeijer, S. Brenner, O.A. Phang, N. Patterson, D. Harlan, J.F. Tisdale, Hematopoietic stem cell transplantation prevents diabetes in NOD mice but does not contribute to significant islet cell regeneration once disease is established. Exp. Hematol. 33, 699–705 (2005). https://doi.org/10.1016/j.exphem.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  26. M.M. Gabr, M.M. Zakaria, A.F. Refaie, E.A. Abdel-Rahman, A.M. Reda, S.S. Ali, S.M. Khater, S.A. Ashamallah, A.M. Ismail, H.E.A. Ismail, N. El-Badri, M.A. Ghoneim, From human mesenchymal stem cells to insulin-producing cells: comparison between bone marrow- and adipose tissue-derived cells. Biomed Res Int 2017, 3854232 (2017). https://doi.org/10.1155/2017/3854232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. L.J. Yang, Liver stem cell-derived beta-cell surrogates for treatment of type 1 diabetes. Autoimmun. Rev. 5, 409–413 (2006). https://doi.org/10.1016/j.autrev.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  28. A.B. Peck, J.G. Cornelius, M. Chaudhari, D. Shatz, V.K. Ramiya, Use of in vitro-generated, stem cell-derived islets to cure type 1 diabetes: how close are we? Ann. N. Y. Acad. Sci. 958, 59–68 (2002). https://doi.org/10.1111/j.1749-6632.2002.tb02947.x

    Article  CAS  PubMed  Google Scholar 

  29. S. Kodama, D.L. Faustman, Routes to regenerating islet cells: stem cells and other biological therapies for type 1 diabetes. Pediatr. Diabetes 5, 38–44 (2004). https://doi.org/10.1111/j.1399-543X.2004.00078.x

    Article  PubMed  Google Scholar 

  30. V. Chandra, G.S. Phadnis, P.D. Nair, R.R. Bhonde, Generation of pancreatic hormone-expressing islet-like cell aggregates from murine adipose tissue-derived stem cells. Stem Cells 27, 1941–1953 (2009). https://doi.org/10.1002/stem.117

    Article  CAS  PubMed  Google Scholar 

  31. V. Chandra, G. Swetha, S. Muthyala, A.K. Jaiswal, J.R. Bellare, P.D. Nair, R.R. Bhonde, Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS One 6, e20615 (2011). https://doi.org/10.1371/journal.pone.0020615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. H.P. Lin, T.M. Chan, R.H. Fu, C.P. Chuu, S.C. Chiu, Y.H. Tseng, S.P. Liu, K.C. Lai, M.C. Shih, Z.S. Lin, H.S. Chen, D.C. Yeh, S.Z. Lin, Applicability of adipose-derived stem cells in type 1 diabetes mellitus. Cell Transplant. 24, 521–532 (2015). https://doi.org/10.3727/096368915X686977

    Article  PubMed  Google Scholar 

  33. Z. Eydian, A. Mohammad Ghasemi, S. Ansari, A.N. Kamali, M. Khosravi, S. Momtaz, S. Riki, L. Rafighdoost, R. Entezari Heravi, Differentiation of multipotent stem cells to insulin-producing cells for treatment of diabetes mellitus: bone marrow- and adipose tissue-derived cells comparison. Mol. Biol. Rep. 49, 3539–3548 (2022). https://doi.org/10.1007/s11033-022-07194-7

    Article  CAS  PubMed  Google Scholar 

  34. K.C. Lan, C.C. Wang, Y.P. Yen, R.S. Yang, S.H. Liu, D.C. Chan, Islet-like clusters derived from skeletal muscle-derived stem/progenitor cells for autologous transplantation to control type 1 diabetes in mice. Artif. Cells Nanomed. Biotechnol. 46, S328–S335 (2018). https://doi.org/10.1080/21691401.2018.1492421

    Article  CAS  PubMed  Google Scholar 

  35. A.N. Balamurugan, B. Naziruddin, A. Lockridge, M. Tiwari, G. Loganathan, M. Takita, S. Matsumoto, K. Papas, M. Trieger, H. Rainis, T. Kin, T.W. Kay, S. Wease, S. Messinger, C. Ricordi, R. Alejandro, J. Markmann, J. Kerr-Conti, M.R. Rickels, C. Liu, X. Zhang, P. Witkowski, A. Posselt, P. Maffi, A. Secchi, T. Berney, P.J. O’Connell, B.J. Hering, F.B. Barton, Islet product characteristics and factors related to successful human islet transplantation from the Collaborative Islet Transplant Registry (CITR) 1999-2010. Am. J. Transplant. 14, 2595–2606 (2014). https://doi.org/10.1111/ajt.12872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. Fujikura, K. Hosoda, K. Nakao, Cell transplantation therapy for diabetes mellitus: endocrine pancreas and adipocyte. Endocr. J. 60, 697–708 (2013). https://doi.org/10.1507/endocrj.ej13-0162

    Article  CAS  PubMed  Google Scholar 

  37. A. Soejitno, P.K. Prayudi, The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther. Adv. Endocrinol. Metab. 2, 197–210 (2011). https://doi.org/10.1177/2042018811420198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. B. Soria, F.J. Bedoya, J.R. Tejedo, A. Hmadcha, R. Ruiz-Salmeron, S. Lim, F. Martin, Cell therapy for diabetes mellitus: an opportunity for stem cells? Cells Tissues Organs 188, 70–77 (2008). https://doi.org/10.1159/000119407

    Article  CAS  PubMed  Google Scholar 

  39. L.N. Randolph, A. Bhattacharyya, X.L. Lian, Human beta cells generated from pluripotent stem cells or cellular reprogramming for curing diabetes. Regen. Eng. Transl. Med. 5, 42–52 (2019). https://doi.org/10.1007/s40883-018-0082-y

    Article  CAS  PubMed  Google Scholar 

  40. X. Liu, Y. Wang, Y. Li, X. Pei, Research status and prospect of stem cells in the treatment of diabetes mellitus. Sci. China Life Sci. 56, 306–312 (2013). https://doi.org/10.1007/s11427-013-4469-1

    Article  CAS  PubMed  Google Scholar 

  41. H.A. Russ, S. Efrat, Development of human insulin-producing cells for cell therapy of diabetes. Pediatr. Endocrinol. Rev. 9, 590–597 (2011)

    PubMed  Google Scholar 

  42. M.M. Santosa, B.S. Low, N.M. Pek, A.K. Teo, Knowledge gaps in rodent pancreas biology: taking human pluripotent stem cell-derived pancreatic beta cells into our own hands. Front. Endocrinol. 6, 194 (2015). https://doi.org/10.3389/fendo.2015.00194

    Article  Google Scholar 

  43. P. Wang, N.M. Fiaschi-Taesch, R.C. Vasavada, D.K. Scott, A. Garcia-Ocana, A.F. Stewart, Diabetes mellitus–advances and challenges in human beta-cell proliferation. Nat. Rev. Endocrinol. 11, 201–212 (2015). https://doi.org/10.1038/nrendo.2015.9

    Article  CAS  PubMed  Google Scholar 

  44. S.G. Rane, J.H. Lee, H.M. Lin, Transforming growth factor-beta pathway: role in pancreas development and pancreatic disease. Cytokine Growth Factor Rev. 17, 107–119 (2006). https://doi.org/10.1016/j.cytogfr.2005.09.003

    Article  CAS  PubMed  Google Scholar 

  45. A. Rezania, J.E. Bruin, P. Arora, A. Rubin, I. Batushansky, A. Asadi, S. O’Dwyer, N. Quiskamp, M. Mojibian, T. Albrecht, Y.H. Yang, J.D. Johnson, T.J. Kieffer, Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014). https://doi.org/10.1038/nbt.3033

    Article  CAS  PubMed  Google Scholar 

  46. M. Rhinn, P. Dollé, Retinoic acid signalling during development. Development 139, 843–858 (2012). https://doi.org/10.1242/dev.065938

    Article  CAS  PubMed  Google Scholar 

  47. T.C. Schulz, H.Y. Young, A.D. Agulnick, M.J. Babin, E.E. Baetge, A.G. Bang, A. Bhoumik, I. Cepa, R.M. Cesario, C. Haakmeester, K. Kadoya, J.R. Kelly, J. Kerr, L.A. Martinson, A.B. McLean, M.A. Moorman, J.K. Payne, M. Richardson, K.G. Ross, E.S. Sherrer, X. Song, A.Z. Wilson, E.P. Brandon, C.E. Green, E.J. Kroon, O.G. Kelly, K.A. D’Amour, A.J. Robins, A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 7, e37004 (2012). https://doi.org/10.1371/journal.pone.0037004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. J. Jensen, E.E. Pedersen, P. Galante, J. Hald, R.S. Heller, M. Ishibashi, R. Kageyama, F. Guillemot, P. Serup, O.D. Madsen, Control of endodermal endocrine development by Hes-1. Nat. Genet. 24, 36–44 (2000). https://doi.org/10.1038/71657

    Article  CAS  PubMed  Google Scholar 

  49. A. Apelqvist, H. Li, L. Sommer, P. Beatus, D.J. Anderson, T. Honjo, M. Hrabe de Angelis, U. Lendahl, H. Edlund, Notch signalling controls pancreatic cell differentiation. Nature. 400, 877–881 (1999). https://doi.org/10.1038/23716

    Article  CAS  PubMed  Google Scholar 

  50. L.C. Murtaugh, B.Z. Stanger, K.M. Kwan, D.A. Melton, Notch signaling controls multiple steps of pancreatic differentiation. Proc. Natl Acad. Sci. USA 100, 14920–14925 (2003). https://doi.org/10.1073/pnas.2436557100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. S.Y. Chun, D.L. Mack, E. Moorefield, S.H. Oh, T.G. Kwon, M.J. Pettenati, J.J. Yoo, P.D. Coppi, A. Atala, S. Soker, Pdx1 and controlled culture conditions induced differentiation of human amniotic fluid-derived stem cells to insulin-producing clusters. J. Tissue Eng. Regener. Med. 9, 540–549 (2015). https://doi.org/10.1002/term.1631

    Article  CAS  Google Scholar 

  52. W. Nishimura, H. Iwasa, M. Tumurkhuu, Role of the transintenance of pancreatic β-cells. Int. J. Mol. Sci. 23 (2022). https://doi.org/10.3390/ijms23094478

  53. M.A. Huotari, P.J. Miettinen, J. Palgi, T. Koivisto, J. Ustinov, D. Harari, Y. Yarden, T. Otonkoski, ErbB signaling regulates lineage determination of developing pancreatic islet cells in embryonic organ culture. Endocrinology. 143, 4437–4446 (2002). https://doi.org/10.1210/en.2002-220382

    Article  CAS  PubMed  Google Scholar 

  54. Y.M. Cho, J.M. Lim, D.H. Yoo, J.H. Kim, S.S. Chung, S.G. Park, T.H. Kim, S.K. Oh, Y.M. Choi, S.Y. Moon, K.S. Park, H.K. Lee, Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic beta-cell differentiation in human embryonic stem cells. Biochem. Biophys. Res. Commun. 366, 129–134 (2008). https://doi.org/10.1016/j.bbrc.2007.11.112

    Article  CAS  PubMed  Google Scholar 

  55. B. Rajaei, M. Shamsara, L.M. Amirabad, M. Massumi, M.H. Sanati, Pancreatic Endoderm-derived from diabetic patient-specific induced pluripotent stem cell generates glucose-responsive insulin-secreting cells. J. Cell Physiol. 232, 2616–2625 (2017). https://doi.org/10.1002/jcp.25459

    Article  CAS  PubMed  Google Scholar 

  56. M.F. Abazari, N. Nasiri, F. Nejati, S. Zare Karizi, M. Amini Faskhodi, E. Saburi, N. Aghapur, M.R. Mahdavi, A. Ardeshirylajimi, S.E. Enderami, F. Soleimanifar, Comparison of human-induced pluripotent stem cells and mesenchymal stem cell differentiation potential to insulin producing cells in 2D and 3D culture systems in vitro. J. Cell Physiol. 235, 4239–4246 (2020). https://doi.org/10.1002/jcp.29298

    Article  CAS  PubMed  Google Scholar 

  57. B. Bose, S.P. Shenoy, S. Konda, P. Wangikar, Human embryonic stem cell differentiation into insulin secreting β-cells for diabetes. Cell Biol. Int. 36, 1013–1020 (2012). https://doi.org/10.1042/cbi20120210

    Article  CAS  PubMed  Google Scholar 

  58. J.H. Shim, S.E. Kim, D.H. Woo, S.K. Kim, C.H. Oh, R. McKay, J.H. Kim, Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia. 50, 1228–1238 (2007). https://doi.org/10.1007/s00125-007-0634-z

    Article  CAS  PubMed  Google Scholar 

  59. A. El-Badawy, N. El-Badri, The cell cycle as a brake for beta-cell regeneration from embryonic stem cells. Stem Cell. Res. Ther. 7, 9 (2016). https://doi.org/10.1186/s13287-015-0274-z

    Article  PubMed  PubMed Central  Google Scholar 

  60. R. Faast, J. White, P. Cartwright, L. Crocker, B. Sarcevic, S. Dalton, Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16(INK4a). Oncogene. 23, 491–502 (2004). https://doi.org/10.1038/sj.onc.1207133

    Article  CAS  PubMed  Google Scholar 

  61. A. Calder, I. Roth-Albin, S. Bhatia, C. Pilquil, J.H. Lee, M. Bhatia, M. Levadoux-Martin, J. McNicol, J. Russell, T. Collins, J.S. Draper, Lengthened G1 phase indicates differentiation status in human embryonic stem cells. Stem Cells Dev. 22, 279–295 (2013). https://doi.org/10.1089/scd.2012.0168

    Article  CAS  PubMed  Google Scholar 

  62. M.E. Bechard, C.V. Wright, New ideas connecting the cell cycle and pancreatic endocrine-lineage specification. Cell Cycle 16, 301–303 (2017). https://doi.org/10.1080/15384101.2016.1256149

    Article  CAS  PubMed  Google Scholar 

  63. E. Stead, J. White, R. Faast, S. Conn, S. Goldstone, J. Rathjen, U. Dhingra, P. Rathjen, D. Walker, S. Dalton, Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene. 21, 8320–8333 (2002). https://doi.org/10.1038/sj.onc.1206015

    Article  CAS  PubMed  Google Scholar 

  64. R.V. Mettus, S.G. Rane, Characterization of the abnormal pancreatic development, reduced growth and infertility in Cdk4 mutant mice. Oncogene. 22, 8413–8421 (2003). https://doi.org/10.1038/sj.onc.1206888

    Article  CAS  PubMed  Google Scholar 

  65. T. Otonkoski, New tools for experimental diabetes research: Cellular reprogramming and genome editing. Ups J. Med. Sci. 121, 146–150 (2016). https://doi.org/10.3109/03009734.2016.1149529

    Article  PubMed  PubMed Central  Google Scholar 

  66. K.F. Leavens, J.R. Alvarez-Dominguez, L.T. Vo, H.A. Russ, A.V. Parent, Stem cell-based multi-tissue platforms to model human autoimmune diabetes. Mol. Metab. 66, 101610 (2022). https://doi.org/10.1016/j.molmet.2022.101610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. S. Balakrishnan, S. Dhavamani, C. Prahalathan, beta-Cell specific transcription factors in the context of diabetes mellitus and beta-cell regeneration. Mech. Dev. 163, 103634 (2020). https://doi.org/10.1016/j.mod.2020.103634

    Article  CAS  PubMed  Google Scholar 

  68. Z.Y. Sun, T.Y. Yu, F.X. Jiang, W. Wang. Functional maturation of immature beta cells: A roadblock for stem cell therapy for type 1 diabetes. World J. Stem Cells. 26 (3), 193–207 (2021). https://doi.org/10.4252/wjsc.v13.i3.193

  69. B. Rajaei, M. Shamsara, M.H. Sanati, In vitro generation of glucose-responsive insulin-secreting cells from PDX1-overexpressing human-induced Pluripotent stem cell derived from diabetic patient. ASAIO J. 64, 819–826 (2018). https://doi.org/10.1097/MAT.0000000000000728

    Article  CAS  PubMed  Google Scholar 

  70. D. Dayer, M.R. Tabandeh, E. Moghimipour, M. Hashemi Tabar, A. Ghadiri, E. Allah Bakhshi, M. Orazizadeh, M.A. Ghafari, MafA overexpression: a new efficient protocol for in vitro differentiation of adipose-derived mesenchymal stem cells into functional insulin-producing cells. Cell J. 21, 169–178 (2019). https://doi.org/10.22074/cellj.2019.5669

    Article  PubMed  PubMed Central  Google Scholar 

  71. D. Gao, P. Dai, Z. Fan, J. Wang, Y. Zhang, The roles of different multigene combinations of Pdx1, Ngn3, Sox9, Pax4, and Nkx2.2 in the reprogramming of canine ADSCs into IPCs. Cell Transpl. 31, 9636897221081483 (2022). https://doi.org/10.1177/09636897221081483

    Article  Google Scholar 

  72. L. Velazco-Cruz, M.M. Goedegebuure, K.G. Maxwell, P. Augsornworawat, N.J. Hogrebe, J.R. Millman, SIX2 regulates human beta cell differentiation from stem cells and functional maturation in vitro. Cell Rep. 31, 107687 (2020). https://doi.org/10.1016/j.celrep.2020.107687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. A. Diane, N.A. Al-Shukri, U.M.R. Bin Abdul Mu, H.H. Al-Siddiqi, Beta-cell mitochondria in diabetes mellitus: a missing puzzle piece in the generation of hPSC-derived pancreatic beta-cells? J. Transl. Med. 20, 163 (2022). https://doi.org/10.1186/s12967-022-03327-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. J.C. Davis, T.C. Alves, A. Helman, J.C. Chen, J.H. Kenty, R.L. Cardone, D.R. Liu, R.G. Kibbey, D.A. Melton, Glucose response by stem cell-derived beta cells in vitro is inhibited by a bottleneck in glycolysis. Cell Rep. 31, 107623 (2020). https://doi.org/10.1016/j.celrep.2020.107623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. L. Lu, L. Zhitao, C. Nannan, H. Mingzhu, H. Xiaoping, H. Dongsheng, P. Zongfu, L. Xiaoyang, Mitofusin2 promotes beta cell maturation from mouse embryonic stem cells via Sirt3/Idh2 activation. Stem Cells Int. 2022, 1172795 (2022). https://doi.org/10.1155/2022/1172795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Q. Ma, Y. Xiao, W. Xu, M. Wang, S. Li, Z. Yang, M. Xu, T. Zhang, Z.N. Zhang, R. Hu, Q. Su, F. Yuan, T. Xiao, X. Wang, Q. He, J. Zhao, Z.J. Chen, Z. Sheng, M. Chai, H. Wang, W. Shi, Q. Deng, X. Cheng, W. Li, ZnT8 loss-of-function accelerates functional maturation of hESC-derived beta cells and resists metabolic stress in diabetes. Nat. Commun. 13, 4142 (2022). https://doi.org/10.1038/s41467-022-31829-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. E. Yoshihara, C. O’Connor, E. Gasser, Z. Wei, T.G. Oh, T.W. Tseng, D. Wang, F. Cayabyab, Y. Dai, R.T. Yu, C. Liddle, A.R. Atkins, M. Downes, R.M. Evans, Immune-evasive human islet-like organoids ameliorate diabetes. Nature. 586, 606–611 (2020). https://doi.org/10.1038/s41586-020-2631-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. L.T. Lock, E.S. Tzanakakis, Stem/Progenitor cell sources of insulin-producing cells for the treatment of diabetes. Tissue Eng. 13, 1399–1412 (2007). https://doi.org/10.1089/ten.2007.0047

    Article  CAS  PubMed  Google Scholar 

  79. J.R. Benthuysen, A.C. Carrano, M. Sander, Advances in beta cell replacement and regeneration strategies for treating diabetes. J Clin Invest. 126, 3651–3660 (2016). https://doi.org/10.1172/JCI87439

    Article  PubMed  PubMed Central  Google Scholar 

  80. S. Chen, M. Borowiak, J.L. Fox, R. Maehr, K. Osafune, L. Davidow, K. Lam, L.F. Peng, S.L. Schreiber, L.L. Rubin, D. Melton, A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat. Chem. Biol. 5, 258–265 (2009). https://doi.org/10.1038/nchembio.154

    Article  CAS  PubMed  Google Scholar 

  81. T.K. Kim, J.S. Lee, H.S. Jung, T.K. Ha, S.M. Kim, N. Han, E.J. Lee, T.N. Kim, M.J. Kwon, S.H. Lee, M.K. Kim, B.D. Rhee, J.H. Park, Triiodothyronine induces proliferation of pancreatic β-cells through the MAPK/ERK pathway. Exp. Clin. Endocrinol. Diabetes 122, 240–245 (2014). https://doi.org/10.1055/s-0034-1367060

    Article  CAS  PubMed  Google Scholar 

  82. S. Misiti, E. Anastasi, S. Sciacchitano, C. Verga Falzacappa, L. Panacchia, B. Bucci, D. Khouri, I. D’Acquarica, E. Brunetti, U. Di Mario, V. Toscano, R. Perfetti, 3,5,3’-Triiodo-L-thyronine enhances the differentiation of a human pancreatic duct cell line (hPANC-1) towards a beta-cell-Like phenotype. J. Cell Physiol. 204, 286–296 (2005). https://doi.org/10.1002/jcp.20293

    Article  CAS  PubMed  Google Scholar 

  83. F.X. Jiang, K. Li, M. Archer, M. Mehta, E. Jamieson, A. Charles, J.E. Dickinson, M. Matsumoto, G. Morahan, Differentiation of IsleT progenitors regulated by Nicotinamide into Transcriptome-verified beta cells that ameliorate diabetes. Stem Cells 35, 1341–1354 (2017). https://doi.org/10.1002/stem.2567

    Article  CAS  PubMed  Google Scholar 

  84. M.C. Gaudreau, R.R. Gudi, G. Li, B.M. Johnson, C. Vasu, Gastrin producing syngeneic mesenchymal stem cells protect non-obese diabetic mice from type 1 diabetes. Autoimmunity 55, 95–108 (2022). https://doi.org/10.1080/08916934.2021.2012165

    Article  CAS  PubMed  Google Scholar 

  85. T. Dahan, O. Ziv, E. Horwitz, H. Zemmour, J. Lavi, A. Swisa, G. Leibowitz, F.M. Ashcroft, P. In’t Veld, B. Glaser, Y. Dor, Pancreatic β-cells express the fetal islet hormone gastrin in rodent and human diabetes. Diabetes. 66, 426–436 (2017). https://doi.org/10.2337/db16-0641

    Article  CAS  PubMed  Google Scholar 

  86. X. Ma, Y. Lu, Z. Zhou, Q. Li, X. Chen, W. Wang, Y. Jin, Z. Hu, G. Chen, Q. Deng, W. Shang, H. Wang, H. Fu, X. He, X.H. Feng, S. Zhu, Human expandable pancreatic progenitor-derived beta cells ameliorate diabetes. Sci. Adv. 8, eabk1826 (2022). https://doi.org/10.1126/sciadv.abk1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. E. Shin, T.Y. Kwon, Y. Cho, Y. Kim, J.H. Shin, Y.M. Han, ECM architecture-mediated regulation of β-cell differentiation from hESCs via Hippo-independent YAP activation. ACS Biomater. Sci. Eng. 9, 680–692 (2023). https://doi.org/10.1021/acsbiomaterials.2c01054

    Article  CAS  PubMed  Google Scholar 

  88. S. Cechin, S. Alvarez-Cubela, J.A. Giraldo, R.D. Molano, S. Villate, C. Ricordi, A. Pileggi, L. Inverardi, C.A. Fraker, J. Dominguez-Bendala, Influence of in vitro and in vivo oxygen modulation on beta cell differentiation from human embryonic stem cells. Stem Cells Transl. Med. 3, 277–289 (2014). https://doi.org/10.5966/sctm.2013-0160

    Article  CAS  PubMed  Google Scholar 

  89. B. Xu, D. Fan, Y. Zhao, J. Li, Z. Wang, J. Wang, X. Wang, Z. Guan, B. Niu, Three-dimensional culture promotes the differentiation of human dental pulp mesenchymal stem cells into insulin-producing cells for improving the diabetes therapy. Front. Pharmacol. 10, 1576 (2019). https://doi.org/10.3389/fphar.2019.01576

    Article  CAS  PubMed  Google Scholar 

  90. J. Chmielowiec, M. Borowiak. In vitro differentiation and expansion of human pluripotent stem cell-derived pancreatic progenitors. Rev. Diabet. Stud. Spring 11, 19–34 (2014). https://doi.org/10.1900/RDS.2014.11.19

    Article  Google Scholar 

  91. K. Kalra, S.T. Chandrabose, T.S. Ramasamy, N. Kasim, Advances in the generation of functional beta-cells from induced pluripotent stem cells as a cure for diabetes mellitus. Curr. Drug Targets 19, 1463–1477 (2018). https://doi.org/10.2174/1389450119666180605112917

    Article  CAS  PubMed  Google Scholar 

  92. Q. Wang, W. Donelan, H. Ye, Y. Jin, Y. Lin, X. Wu, Y. Wang, Y. Xi, Real-time observation of pancreatic beta cell differentiation from human induced pluripotent stem cells. Am. J. Transl. Res. 11, 3490–3504 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  93. F. Lebreton, V. Lavallard, K. Bellofatto, R. Bonnet, C.H. Wassmer, L. Perez, V. Kalandadze, A. Follenzi, M. Boulvain, J. Kerr-Conte, D.J. Goodman, D. Bosco, T. Berney, E. Berishvili, Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nat. Commun. 10, 4491 (2019). https://doi.org/10.1038/s41467-019-12472-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. X. Zhang, Z. Ma, E. Song, T. Xu, Islet organoid as a promising model for diabetes. Protein Cell 13, 239–257 (2022). https://doi.org/10.1007/s13238-021-00831-0

    Article  CAS  PubMed  Google Scholar 

  95. C.H. Wassmer, F. Lebreton, K. Bellofatto, L. Perez, D. Cottet-Dumoulin, A. Andres, D. Bosco, T. Berney, V. Othenin-Girard, B. Martinez De Tejada, M. Cohen, C. Olgasi, A. Follenzi, E. Berishvili, Bio-engineering of pre-vascularized islet organoids for the treatment of Type 1 Diabetes. Transpl. Int. 35, 10214 (2021). https://doi.org/10.3389/ti.2021.10214

    Article  CAS  PubMed  Google Scholar 

  96. F. Lebreton, K. Bellofatto, C.H. Wassmer, L. Perez, V. Lavallard, G. Parnaud, D. Cottet-Dumoulin, J. Kerr-Conte, F. Pattou, D. Bosco, V. Othenin-Girard, B. Martinez de Tejada, E. Berishvili, Shielding islets with human amniotic epithelial cells enhances islet engraftment and revascularization in a murine diabetes model. Am. J. Transpl. 20, 1600–6143 (Electronic), 1551–1561 (2020).

  97. S. Pellegrini, V. Zamarian, V. Sordi, Strategies to improve the safety of iPSC-derived beta cells for beta cell replacement in diabetes. Transpl. Int. 35, 10575 (2022). https://doi.org/10.3389/ti.2022.10575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. A. Rezania, J.E. Bruin, J. Xu, K. Narayan, J.K. Fox, J.J. O’Neil, T.J. Kieffer, Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31, 2432–2442 (2013). https://doi.org/10.1002/stem.1489

    Article  CAS  PubMed  Google Scholar 

  99. F.M. Docherty, K.A. Riemondy, R. Castro-Gutierrez, J.M. Dwulet, A.H. Shilleh, M.S. Hansen, S.P.M. Williams, L.H. Armitage, K.E. Santostefano, M.A. Wallet, C.E. Mathews, T.M. Triolo, R.K.P. Benninger, H.A. Russ, ENTPD3 marks mature stem cell-derived beta-cells formed by self-aggregation in vitro. Diabetes 70, 2554–2567 (2021). https://doi.org/10.2337/db20-0873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. T. van der Meulen, M.O. Huising, Maturation of stem cell-derived beta-cells guided by the expression of urocortin 3. Rev. Diabet. Stud. Spring 11, 115–132 (2014). https://doi.org/10.1900/RDS.2014.11.115

    Article  Google Scholar 

  101. D.H. Kassem, M.M. Kamal, L. El-Kholy Ael, H.O. El-Mesallamy, Association of expression levels of pluripotency/stem cell markers with the differentiation outcome of Wharton’s jelly mesenchymal stem cells into insulin producing cells. Biochimie 127, 187–195 (2016). https://doi.org/10.1016/j.biochi.2016.05.019

    Article  CAS  PubMed  Google Scholar 

  102. H.E. Arda, L. Li, J. Tsai, E.A. Torre, Y. Rosli, H. Peiris, R.C. Spitale, C. Dai, X. Gu, K. Qu, P. Wang, J. Wang, M. Grompe, R. Scharfmann, M.S. Snyder, R. Bottino, A.C. Powers, H.Y. Chang, S.K. Kim, Age-dependent pancreatic gene regulation reveals mechanisms governing human β cell function. Cell Metab. 23, 909–920 (2016). https://doi.org/10.1016/j.cmet.2016.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. D. Balboa, D.G. Iworima, T.J. Kieffer, Human Pluripotent stem cells to model islet defects in diabetes. Front. Endocrinol. 12, 642152 (2021). https://doi.org/10.3389/fendo.2021.642152

    Article  Google Scholar 

  104. P. Augsornworawat, K.G. Maxwell, L. Velazco-Cruz, J.R. Millman, Single-cell transcriptome profiling reveals β cell maturation in stem cell-derived islets after transplantation. Cell Rep. 32, 108067 (2020). https://doi.org/10.1016/j.celrep.2020.108067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. A. Veres, A.L. Faust, H.L. Bushnell, E.N. Engquist, J.H. Kenty, G. Harb, Y.C. Poh, E. Sintov, M. Gürtler, F.W. Pagliuca, Q.P. Peterson, D.A. Melton, Charting cellular identity during human in vitro β-cell differentiation. Nature 569, 368–373 (2019). https://doi.org/10.1038/s41586-019-1168-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. F. Cayabyab, L.R. Nih, E. Yoshihara, Advances in pancreatic islet transplantation sites for the treatment of diabetes. Front. Endocrinol. 12, 732431 (2021). https://doi.org/10.3389/fendo.2021.732431

    Article  Google Scholar 

  107. T. Kasputis, D. Clough, F. Noto, K. Rychel, B. Dye, L.D. Shea, Microporous polymer scaffolds for the transplantation of embryonic stem cell derived pancreatic progenitors to a clinically translatable site for the treatment of Type I diabetes. ACS Biomater. Sci. Eng. 4, 1770–1778 (2018). https://doi.org/10.1021/acsbiomaterials.7b00912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. X. Li, Z. Wei, L. Wu, H. Lv, Y. Zhang, J. Li, H. Yao, H. Zhang, B. Yang, X. Xu, J. Jiang, Efficacy of Fe(3)O(4)@polydopamine nanoparticle-labeled human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in the treatment of streptozotocin-induced diabetes in rats. Biomater. Sci. 8, 5362–5375 (2020). https://doi.org/10.1039/d0bm01076f

    Article  CAS  PubMed  Google Scholar 

  109. A. Ramzy, P.J. Belmonte, M.J.S. Braam, S. Ida, E.M. Wilts, M.K. Levings, A. Rezania, T.J. Kieffer, A century-long journey from the discovery of insulin to the implantation of stem cell-derived islets. Endocr. Rev. 44, 222–253 (2023). https://doi.org/10.1210/endrev/bnac021

    Article  PubMed  Google Scholar 

  110. Tun SBB, M. Chua, R. Hasan, M. Köhler, X. Zheng, Y. Ali, M.H. Abdulreda, L. Juntti-Berggren, V.A. Barathi, P.O. Berggren, Islet transplantation to the anterior chamber of the Eye-A future treatment option for insulin-deficient Type-2 diabetics? A case report from a Nonhuman Type-2 diabetic primate. Cell Transpl. 29, 963689720913256 (2020). https://doi.org/10.1177/0963689720913256

    Article  Google Scholar 

  111. T.J.I. Kieffer. Progress towards a stem cell based therapy for diabetes. J. Stem Cells Regen. Med. 17, 61 (2021). https://doi.org/10.46582/jsrm.1702010

    Article  PubMed  PubMed Central  Google Scholar 

  112. N. Sakata, T. Aoki, G. Yoshimatsu, H. Tsuchiya, T. Hata, Y. Katayose, S. Egawa, M. Unno, Strategy for clinical setting in intramuscular and subcutaneous islet transplantation. Diabetes Metab. Res. Rev. 30, 1–10 (2014). https://doi.org/10.1002/dmrr.2463

    Article  PubMed  Google Scholar 

  113. J.D. Weaver, D.M. Headen, J. Aquart, C.T. Johnson, L.D. Shea, H. Shirwan, A.J. García, Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci. Adv. 3, e1700184 (2017). https://doi.org/10.1126/sciadv.1700184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. F. Van Hulle, K. De Groot, R. Hilbrands, U. Van de Velde, K. Suenens, G. Stangé, I. De Mesmaeker, D.L. De Paep, Z. Ling, B. Roep, P. Gillard, D. Pipeleers, B. Keymeulen, D. Jacobs-Tulleneers-Thevissen, Function and composition of pancreatic islet cell implants in omentum of type 1 diabetes patients. Am. J. Transpl. 22, 927–936 (2022). https://doi.org/10.1111/ajt.16884

    Article  CAS  Google Scholar 

  115. D.L. Faustman, M. Davis, Stem cells in the spleen: therapeutic potential for Sjogren’s syndrome, type I diabetes, and other disorders. Int. J. Biochem. Cell Biol. 42, 1576–1579 (2010). https://doi.org/10.1016/j.biocel.2010.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. M.S. Remedi, C. Emfinger, Pancreatic beta-cell identity in diabetes. Diabetes Obes. Metab. 18, 110–116 (2016). https://doi.org/10.1111/dom.12727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. S. Yagihashi, W. Inaba, H. Mizukami, Dynamic pathology of islet endocrine cells in type 2 diabetes: beta-Cell growth, death, regeneration and their clinical implications. J. Diabetes Investig. 7, 155–165 (2016). https://doi.org/10.1111/jdi.12424

    Article  CAS  PubMed  Google Scholar 

  118. P.A. Halban, Cell therapy for type 2 diabetes: is it desirable and can we get it? Diabetes Obes. Metab. 10, 205–211 (2008). https://doi.org/10.1111/j.1463-1326.2008.00957.x

    Article  PubMed  Google Scholar 

  119. F. Fantuzzi, S. Toivonen, A.A. Schiavo, H. Chae, M. Tariq, T. Sawatani, N. Pachera, Y. Cai, C. Vinci, E. Virgilio, L. Ladriere, M. Suleiman, P. Marchetti, J.C. Jonas, P. Gilon, D.L. Eizirik, M. Igoillo-Esteve, M. Cnop, In depth functional characterization of human induced pluripotent stem cell-derived beta cells in vitro and in vivo. Front Cell Dev Biol 10, 967765 (2022). https://doi.org/10.3389/fcell.2022.967765

    Article  PubMed  PubMed Central  Google Scholar 

  120. N. Saber, J.E. Bruin, S. O’Dwyer, H. Schuster, A. Rezania, T.J. Kieffer, Sex differences in maturation of human embryonic stem cell-derived beta cells in mice. Endocrinology 159, 1827–1841 (2018). https://doi.org/10.1210/en.2018-00048

    Article  CAS  PubMed  Google Scholar 

  121. M. Zhao, S.A. Amiel, S. Ajami, J. Jiang, M. Rela, N. Heaton, G.C. Huang, Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells. PLoS One 3, e2666 (2008). https://doi.org/10.1371/journal.pone.0002666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. J.E. Bruin, A. Asadi, J.K. Fox, S. Erener, A. Rezania, T.J. Kieffer, Accelerated maturation of human stem cell-derived pancreatic progenitor cells into insulin-secreting cells in immunodeficient rats relative to mice. Stem Cell Rep. 5, 1081–1096 (2015). https://doi.org/10.1016/j.stemcr.2015.10.013

    Article  CAS  Google Scholar 

  123. V. Sordi, L. Monaco, L. Piemonti, Cell therapy for type 1 diabetes: from islet transplantation to stem cells. Horm. Horm. Res. Paediatr. 96, 658–669 (2022). https://doi.org/10.1159/000526618

    Article  CAS  PubMed  Google Scholar 

  124. S. Pellegrini, L. Piemonti, V. Sordi, Pluripotent stem cell replacement approaches to treat type 1 diabetes. Curr Opin Pharmacol 43, 20–26 (2018). https://doi.org/10.1016/j.coph.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  125. R.Y. Calne, M.A. Ghoneim, K.O. Lee, G.S. Uin, Gene and stem cell therapy for diabetes. Clin Transpl. 12, 111–112 (2013).

    Google Scholar 

  126. E. de Klerk, M. Hebrok, Stem cell-based clinical trials for Diabetes Mellitus. Front. Endocrinol. 12, 631463 (2021). https://doi.org/10.3389/fendo.2021.631463

    Article  Google Scholar 

  127. K. Kirk, E. Hao, R. Lahmy, P. Itkin-Ansari, Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. Stem Cell. Res. 12, 807–814 (2014). https://doi.org/10.1016/j.scr.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  128. A.A. Tomei, C. Villa, C. Ricordi, Development of an encapsulated stem cell-based therapy for diabetes. Expert Opin. Biol. Ther. 15, 1321–1336 (2015). https://doi.org/10.1517/14712598.2015.1055242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. B.E. Tuch, T.C. Hughes, M.D. Evans, Encapsulated pancreatic progenitors derived from human embryonic stem cells as a therapy for insulin-dependent diabetes. Diabetes Metab. Res. Rev. 27, 928–932 (2011). https://doi.org/10.1002/dmrr.1274

    Article  CAS  PubMed  Google Scholar 

  130. A.J. Vegas, O. Veiseh, M. Gurtler, J.R. Millman, F.W. Pagliuca, A.R. Bader, J.C. Doloff, J. Li, M. Chen, K. Olejnik, H.H. Tam, S. Jhunjhunwala, E. Langan, S. Aresta-Dasilva, S. Gandham, J.J. McGarrigle, M.A. Bochenek, J. Hollister-Lock, J. Oberholzer, D.L. Greiner, G.C. Weir, D.A. Melton, R. Langer, D.G. Anderson, Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016). https://doi.org/10.1038/nm.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. X. Wang, K.G. Maxwell, K. Wang, D.T. Bowers, J.A. Flanders, W. Liu, L.H. Wang, Q. Liu, C. Liu, A. Naji, Y. Wang, B. Wang, J. Chen, A.U. Ernst, J.M. Melero-Martin, J.R. Millman, M. Ma, A nanofibrous encapsulation device for safe delivery of insulin-producing cells to treat type 1 diabetes. Sci. Transl. Med. 13(2021). https://doi.org/10.1126/scitranslmed.abb4601

  132. R. Anzalone, M. Lo Iacono, T. Loria, A. Di Stefano, P. Giannuzzi, F. Farina, G. La Rocca, Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev. Rep. 7, 342–363 (2011). https://doi.org/10.1007/s12015-010-9196-4

    Article  PubMed  Google Scholar 

  133. W. Zhang, Q. Ling, B. Wang, K. Wang, J. Pang, J. Lu, Y. Bi, D. Zhu, Comparison of therapeutic effects of mesenchymal stem cells from umbilical cord and bone marrow in the treatment of type 1 diabetes. Stem Cell. Res. Ther. 13, 406 (2022). https://doi.org/10.1186/s13287-022-02974-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Q. Huang, Y. Huang, J. Liu, Mesenchymal stem cells: an excellent candidate for the treatment of Diabetes Mellitus. Int J Endocrinol 2021, 9938658 (2021). https://doi.org/10.1155/2021/9938658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. T.Y. Yeung, K.L. Seeberger, T. Kin, A. Adesida, N. Jomha, A.M. Shapiro, G.S. Korbutt, Human mesenchymal stem cells protect human islets from pro-inflammatory cytokines. PLoS One 7, e38189 (2012). https://doi.org/10.1371/journal.pone.0038189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. C. Fotino, C. Ricordi, V. Lauriola, R. Alejandro, A. Pileggi, Bone marrow-derived stem cell transplantation for the treatment of insulin-dependent diabetes. Rev. Diabet. Stud. Summer 7, 144–157 (2010). https://doi.org/10.1900/RDS.2010.7.144

    Article  Google Scholar 

  137. Z. Azizi, R. Abbaszadeh, R. Sahebnasagh, A. Norouzy, E. Motevaseli, K. Maedler, Bone marrow mesenchymal stromal cells for diabetes therapy: touch, fuse, and fix? Stem Cell. Res. Ther. 13, 348 (2022). https://doi.org/10.1186/s13287-022-03028-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. M. Haque, F. Lei, X. Xiong, J.K. Das, X. Ren, D. Fang, S. Salek-Ardakani, J.M. Yang, J. Song, Stem cell-derived tissue-associated regulatory T cells suppress the activity of pathogenic cells in autoimmune diabetes. JCI Insight. 4 (2019). https://doi.org/10.1172/jci.insight.126471

  139. Y.L. Sun, L.R. Shang, R.H. Liu, X.Y. Li, S.H. Zhang, Y.K. Ren, K. Fu, H.B. Cheng, B.H. Yahaya, Y.L. Liu, J.T. Lin, Therapeutic effects of menstrual blood-derived endometrial stem cells on mouse models of streptozotocin-induced type 1 diabetes. World J. Stem Cells 14, 104–116 (2022). https://doi.org/10.4252/wjsc.v14.i1.104

    Article  PubMed  PubMed Central  Google Scholar 

  140. E.J. Bassi, P.M. Moraes-Vieira, C.S. Moreira-Sa, D.C. Almeida, L.M. Vieira, C.S. Cunha, M.I. Hiyane, A.S. Basso, A. Pacheco-Silva, N.O. Camara, Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes 61, 2534–2545 (2012). https://doi.org/10.2337/db11-0844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. D.A. Alagpulinsa, J.J.L. Cao, D. Sobell, M.C. Poznansky, Harnessing CXCL12 signaling to protect and preserve functional beta-cell mass and for cell replacement in type 1 diabetes. Pharmacol. Ther. 193, 63–74 (2019). https://doi.org/10.1016/j.pharmthera.2018.08.011

    Article  CAS  PubMed  Google Scholar 

  142. E. Sintov, I. Nikolskiy, V. Barrera, J. Hyoje-Ryu Kenty, A.S. Atkin, D. Gerace, S.J. Ho Sui, K. Boulanger, D.A. Melton, Whole-genome CRISPR screening identifies genetic manipulations to reduce immune rejection of stem cell-derived islets. Stem Cell Rep. 17, 1976–1990 (2022). https://doi.org/10.1016/j.stemcr.2022.08.002

    Article  CAS  Google Scholar 

  143. G.G. Gornalusse, R.K. Hirata, S.E. Funk, L. Riolobos, V.S. Lopes, G. Manske, D. Prunkard, A.G. Colunga, L.A. Hanafi, D.O. Clegg, C. Turtle, D.W. Russell, HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017). https://doi.org/10.1038/nbt.3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. S.D. Sackett, S.J. Kaplan, S.A. Mitchell, M.E. Brown, A.L. Burrack, S. Grey, D. Huangfu, J. Odorico, Genetic engineering of immune evasive stem cell-derived islets. Transpl. Int. 35, 10817 (2022). https://doi.org/10.3389/ti.2022.10817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. H.M. Shahjalal, A. Abdal Dayem, K.M. Lim, T.I. Jeon, S.G. Cho, Generation of pancreatic beta cells for treatment of diabetes: advances and challenges. Stem Cell. Res. Ther. 9, 355 (2018). https://doi.org/10.1186/s13287-018-1099-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. E. Hajizadeh-Saffar, Y. Tahamtani, N. Aghdami, K. Azadmanesh, M. Habibi-Anbouhi, Y. Heremans, N. De Leu, H. Heimberg, P. Ravassard, M.A. Shokrgozar, H. Baharvand, Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Sci Rep. 30, 9322 (2015). https://doi.org/10.1038/srep09322

    Article  CAS  Google Scholar 

  147. M. Seno, M.C.I. Nostro, How can you choose the fate of iPSCs and stem cells, Regeneration or Carcinogenesis? A hypothetical insight.: II. Modelling human beta cell development with pluripotent stem cells. J. Stem Cells Regen. Med. 16, 90–91 (2020). https://doi.org/10.46582/jsrm.1602013

    Article  PubMed  PubMed Central  Google Scholar 

  148. J. Chen, H. Li, F. Addabbo, F. Zhang, E. Pelger, D. Patschan, H.C. Park, M.C. Kuo, J. Ni, G. Gobe, P.N. Chander, A. Nasjletti, M.S. Goligorsky, Adoptive transfer of syngeneic bone marrow-derived cells in mice with obesity-induced diabetes: selenoorganic antioxidant ebselen restores stem cell competence. Am. J. Pathol. 174, 701–711 (2009). https://doi.org/10.2353/ajpath.2009.080606

    Article  PubMed  PubMed Central  Google Scholar 

  149. K. Cierpka-Kmiec, A. Wronska, Z. Kmiec, In vitro generation of pancreatic beta-cells for diabetes treatment. I. beta-like cells derived from human pluripotent stem cells. Folia Histochem. Cytobiol. 57, 1–14 (2019). https://doi.org/10.5603/FHC.a2019.0001

    Article  CAS  PubMed  Google Scholar 

  150. J. Homma, H. Sekine, T. Shimizu, Tricultured cell sheets develop into functional pancreatic islet tissue with a vascular network. Tissue Eng. A 29, 211–224 (2023). https://doi.org/10.1089/ten.TEA.2022.0167

    Article  CAS  Google Scholar 

  151. J. Yang, Y. Yan, X. Yin, X. Liu, I.V. Reshetov, P.A. Karalkin, Q. Li, R.L. Huang, Bioengineering and vascularization strategies for islet organoids: advancing toward diabetes therapy. Metabolism 152, 155786 (2024). https://doi.org/10.1016/j.metabol.2024.155786

    Article  CAS  PubMed  Google Scholar 

  152. C. Bandeiras, A.J. Hwa, J.M.S. Cabral, F.C. Ferreira, S.N. Finkelstein, R.A. Gabbay, Economics of Beta-cell replacement therapy. Curr. Diab. Rep. 19, 75 (2019). https://doi.org/10.1007/s11892-019-1203-9

    Article  PubMed  Google Scholar 

  153. G.G. Nair, E.S. Tzanakakis, M. Hebrok, Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat. Rev. Endocrinol. 16, 506–518 (2020). https://doi.org/10.1038/s41574-020-0375-3

    Article  PubMed  PubMed Central  Google Scholar 

  154. K. Wallner, R.G. Pedroza, I. Awotwe, J.M. Piret, P.A. Senior, Shapiro AMJ, C. McCabe, Stem cells and beta cell replacement therapy: a prospective health technology assessment study. BMC Endocr. Disord. 18, 6 (2018). https://doi.org/10.1186/s12902-018-0233-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. C. Bandeiras, J.M.S. Cabral, R.A. Gabbay, S.N. Finkelstein, F.C. Ferreira, Bringing stem cell-based therapies for Type 1 diabetes to the clinic: early insights from bioprocess economics and cost-effectiveness analysis. Biotechnol. J. 14, e1800563 (2019). https://doi.org/10.1002/biot.201800563

    Article  CAS  PubMed  Google Scholar 

  156. T.C. Schulz, Concise review: manufacturing of pancreatic endoderm cells for clinical trials in Type 1 diabetes. Stem Cells Transl. Med. 4, 927–931 (2015). https://doi.org/10.5966/sctm.2015-0058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. S. Sepyani, S. Momenzadeh, S. Safabakhsh, R. Nedaeinia, R. Salehi, Therapeutic approaches for Type 1 Diabetes: Promising cell-based approaches to achieve ultimate success. SLAS Discov. Adv. Life Sci. R & D 29, 23–33 (2024). https://doi.org/10.1016/j.slasd.2023.11.002

    Article  CAS  Google Scholar 

  158. N. Cuesta-Gomez, K. Verhoeff, I.T. Jasra, R. Pawlick, N. Dadheech, A.M.J. Shapiro, Characterization of stem-cell-derived islets during differentiation and after implantation. Cell Rep. 40, 111238 (2022). https://doi.org/10.1016/j.celrep.2022.111238

    Article  CAS  PubMed  Google Scholar 

  159. C.J. Burns, S.J. Persaud, P.M. Jones, Diabetes mellitus: a potential target for stem cell therapy. Curr. Stem Cell. Res. Ther. 1, 255–266 (2006). https://doi.org/10.2174/157488806776956832

    Article  CAS  PubMed  Google Scholar 

  160. A.L. Marquez-Aguirre, A.A. Canales-Aguirre, E. Padilla-Camberos, H. Esquivel-Solis, N.E. Diaz-Martinez, Development of the endocrine pancreas and novel strategies for beta-cell mass restoration and diabetes therapy. Braz. J. Med. Biol. Res. 48, 765–776 (2015). https://doi.org/10.1590/1414-431X20154363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Z. Zhou, X. Zhu, H. Huang, Z. Xu, J. Jiang, B. Chen, H. Zhu, Recent progress of research regarding the applications of stem cells for treating Diabetes Mellitus. Stem Cells Dev. 31, 102–110 (2022). https://doi.org/10.1089/scd.2021.0083

    Article  CAS  PubMed  Google Scholar 

  162. L. Yang, Z.M. Hu, F.X. Jiang, W. Wang, Stem cell therapy for insulin-dependent diabetes: Are we still on the road? World J. Stem Cells 14, 503–512 (2022). https://doi.org/10.4252/wjsc.v14.i7.503

    Article  PubMed  PubMed Central  Google Scholar 

  163. S. Bourgeois, T. Sawatani, A. Van Mulders, N. De Leu, Y. Heremans, H. Heimberg, M. Cnop, W. Staels, Towards a functional cure for diabetes using stem cell-derived beta cells: are we there yet? Cells. 10 (2021). https://doi.org/10.3390/cells10010191

Download references

Funding

This review was supported by grants from the National Nature Science Foundation of China (82160162, 81760150) and the key project of Jiangxi Provincial Natural Science Foundation (20202ACBL206008).

Author information

Authors and Affiliations

Authors

Contributions

Y.F.L. wrote the manuscript, P.Y. and J.P.L. supervised all stages of manuscript development. All authors have approved the final article.

Corresponding author

Correspondence to Jianping Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Yu, P. & Liu, J. The efficiency of stem cell differentiation into functional beta cells for treating insulin-requiring diabetes: Recent advances and current challenges. Endocrine (2024). https://doi.org/10.1007/s12020-024-03855-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03855-8

Keywords

Navigation