Skip to main content
Log in

New insights into the vitamin D/PTH axis in endocrine-driven metabolic bone diseases

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Endocrine regulation of bone metabolisms is the focus of the “Skeletal Endocrinology” series of meetings.

Aims

To report on the outcome of the discussion on the role of vitamin D/PTH axis in endocrine osteopathies held during the 10th Skeletal Endocrinology Meeting which took place in Stresa (Italy) in March 2023.

Outcomes

Vitamin D/PTH axis has relevant influence on several outcomes in the general population and in patients affected by endocrinopathies such as hypoparathyroidism and secreting pituitary adenomas.

Conclusions

Assessing the status of the vitamin D/PTH axis and using vitamin D and PTH as therapeutic agents is mandatory in several endocrine-related bone metabolic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Canalis, J.P. Bilezikian, A. Angeli, A. Giustina, Perspectives on glucocorticoid-induced osteoporosis. Bone 34(4), 593–598 (2004). https://doi.org/10.1016/j.bone.2003.11.026

    Article  CAS  PubMed  Google Scholar 

  2. G. Mazziotti, J.P. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41(1), 58–69 (2012). https://doi.org/10.1007/s12020-011-9570-2

    Article  CAS  PubMed  Google Scholar 

  3. R. Bouillon, C. Marcocci, G. Carmeliet et al. Skeletal and extraskeletal actions of vitamin D: Current evidence and outstanding questions. Endocr. Rev. 40(4), 1109–1151 (2019). https://doi.org/10.1210/er.2018-00126

    Article  PubMed  Google Scholar 

  4. A. Giustina, R. Bouillon, N. Binkley et al. Controversies in vitamin D: A statement from the third international conference. JBMR 4(12), e10417 (2020). https://doi.org/10.1002/jbm4.10417

    Article  Google Scholar 

  5. A. Giustina, M. Lazaretti-Castro, A.R. Martineau, R.S. Mason, C.J. Rosen, I. Schoenmakers, A view on vitamin D: a pleiotropic factor?. Nat. Rev. Endocrinol. 20(Jan 4), 202–208 (2024). https://doi.org/10.1038/s41574-023-00942-0

    Article  CAS  PubMed  Google Scholar 

  6. A. Cui, P. Xiao, Y. Ma et al. Prevalence, trend, and predictor analyses of vitamin D deficiency in the US population, 2001-2018. Front Nutr. 9, 965376 (2022). https://doi.org/10.3389/fnut.2022.965376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. P.R. Ebeling, R.A. Adler, G. Jones, et al. MANAGEMENT OF ENDOCRINE DISEASE: Therapeutics of Vitamin D. Eur. J. Endocrinol. 179(Oct 5), R239–R259 (2018). https://doi.org/10.1530/EJE-18-0151

    Article  CAS  PubMed  Google Scholar 

  8. C.T. Sempos, A.C. Heijboer, D.D. Bikle, et al. Vitamin D assays and the definition of hypovitaminosis D: results from the First International Conference on Controversies in Vitamin D. Br. J. Clin. Pharm. 84(Oct 10), 2194–2207 (2018). https://doi.org/10.1111/bcp.13652

    Article  CAS  Google Scholar 

  9. M.M. Mendes, A.P.O. Gomes, M.M. Araújo, A.S.G. Coelho, K.M.B. Carvalho, P.B. Botelho, Prevalence of vitamin D deficiency in South America: a systematic review and meta-analysis. Nutr. Rev. 81(10), 1290–1309 (2023). https://doi.org/10.1093/nutrit/nuad010

    Article  PubMed  Google Scholar 

  10. A. Giustina, R. Bouillon, B. Dawson-Hughes et al. Vitamin D in the older population: a consensus statement. Endocrine 79(1), 31–44 (2023). https://doi.org/10.1007/s12020-022-03208-3

    Article  CAS  PubMed  Google Scholar 

  11. L. di Filippo, R. De Lorenzo, A. Giustina, P. Rovere-Querini, C. Conte, Vitamin D in osteosarcopenic Obesity. Nutrients 14(9), 1816 (2022). https://doi.org/10.3390/nu14091816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Giustina, L. di Filippo, A. Allora et al. Vitamin D and malabsorptive gastrointestinal conditions: A bidirectional relationship? Rev. Endocr. Metab. Disord. 24(2), 121–138 (2023). https://doi.org/10.1007/s11154-023-09792-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Giustina, L. di Filippo, A. Facciorusso et al. Vitamin D status and supplementation before and after Bariatric Surgery: Recommendations based on a systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 24, 1011–1029 (2023). https://doi.org/10.1007/s11154-023-09831-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M.D. Walker, S.J. Silverberg, Primary hyperparathyroidism. Nat. Rev. Endocrinol. 14(2), 115–125 (2018). https://doi.org/10.1038/nrendo.2017.104

    Article  CAS  PubMed  Google Scholar 

  15. J.C. Fleet, Vitamin D-mediated regulation of intestinal calcium absorption. Nutrients 14(16), 3351 (2022). https://doi.org/10.3390/nu14163351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Z. Xiang, M. Wang, C. Miao, D. Jin, H. Wang, Mechanism of calcitriol regulating parathyroid cells in secondary hyperparathyroidism. Front Pharm. 13, 1020858 (2022). https://doi.org/10.3389/fphar.2022.1020858

    Article  CAS  Google Scholar 

  17. J.P. Bilezikian, A.M. Formenti, R.A. Adler et al. Vitamin D: Dosing, levels, form, and route of administration: Does one approach fit all? Rev. Endocr. Metab. Disord. 22(4), 1201–1218 (2021). https://doi.org/10.1007/s11154-021-09693-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. L. di Filippo, F.M. Ulivieri, R. Nuti, A. Giustina, Use of vitamin D with anti-osteoporotic drugs: are available clinical trials telling us the whole story? Endocrine 83, 342–348 (2023). https://doi.org/10.1007/s12020-023-03551-z

    Article  CAS  PubMed  Google Scholar 

  19. E. Jodar, C. Campusano, R.T. de Jongh, M.F. Holick, Calcifediol: a review of its pharmacological characteristics and clinical use in correcting vitamin D deficiency. Eur. J. Nutr. 62(4), 1579–1597 (2023). https://doi.org/10.1007/s00394-023-03103-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. R. Bouillon, D. Manousaki, C. Rosen, K. Trajanoska, F. Rivadeneira, J.B. Richards, The health effects of vitamin D supplementation: evidence from human studies. Nat. Rev. Endocrinol. 18(2), 96–110 (2022). https://doi.org/10.1038/s41574-021-00593-z

    Article  CAS  PubMed  Google Scholar 

  21. J.P. Sutherland, A. Zhou, E. Hyppönen, Vitamin D deficiency increases mortality risk in the UK biobank : A nonlinear Mendelian randomization study. Ann. Intern Med 175(11), 1552–1559 (2022). https://doi.org/10.7326/M21-3324

    Article  PubMed  Google Scholar 

  22. A.G. Pittas, T. Kawahara, R. Jorde et al. Vitamin D and risk for type 2 diabetes in people with prediabetes : A systematic review and meta-analysis of individual participant data from 3 randomized clinical trials. Ann. Intern Med 176(3), 355–363 (2023). https://doi.org/10.7326/M22-3018

    Article  PubMed  Google Scholar 

  23. J.P. Bilezikian, N. Binkley, H.F. De Luca et al. Consensus and controversial aspects of vitamin D and COVID-19. J. Clin. Endocrinol. Metab. 108(5), 1034–1042 (2023). https://doi.org/10.1210/clinem/dgac719

    Article  PubMed  Google Scholar 

  24. M. Puig-Domingo, M. Marazuela, B.O. Yildiz, A. Giustina, COVID-19 and endocrine and metabolic diseases. An updated statement from the European Society of Endocrinology. Endocrine 72, 301–316 (2021). https://doi.org/10.1007/s12020-021-02734-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. L. di Filippo, S. Frara, M. Doga, A. Giustina, The osteo-metabolic phenotype of COVID-19: an update. Endocrine 78(2), 247–254 (2022). https://doi.org/10.1007/s12020-022-03135-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. L. di Filippo, M. Uygur, M. Locatelli, F. Nannipieri, S. Frara, A. Giustina, Low vitamin D levels predict outcomes of COVID-19 in patients with both severe and non-severe disease at hospitalization. Endocrine 80(3), 669–683 (2023). https://doi.org/10.1007/s12020-023-03331-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. L. di Filippo, S. Frara, F. Nannipieri et al. Low vitamin D levels are associated with Long COVID syndrome in COVID-19 survivors. J. Clin. Endocrinol. Metab. 108, dgad207 (2023). https://doi.org/10.1210/clinem/dgad207

    Article  Google Scholar 

  28. L. di Filippo, S. Frara, U. Terenzi et al. Lack of vitamin D predicts impaired long-term immune response to COVID-19 vaccination. Endocrine 82, 536–541 (2023). https://doi.org/10.1007/s12020-023-03481-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Giustina, Vitamin D at the crossroad of prediabetes, sarcopenia, and risk of falls. Lancet Healthy Longev. Published online February 29, 2024 https://doi.org/10.1016/S2666-7568(24)00032-1

  30. J. Hahn, N.R. Cook, E.K. Alexander et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 376, e066452 (2022). https://doi.org/10.1136/bmj-2021-066452

    Article  PubMed  PubMed Central  Google Scholar 

  31. K. H. Costenbader, N. R. Cook, I. Lee et al. Vitamin D and Marine n-3 Fatty Acids for Autoimmune Disease Prevention: Outcomes Two Years After Completion of a Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol. 2024 https://doi.org/10.1002/art.42811

  32. J.P. Bilezikian, Hypoparathyroidism. J. Clin. Endocrinol. Metab. 105(6), 1722–1736 (2020). https://doi.org/10.1210/clinem/dgaa113

    Article  PubMed  PubMed Central  Google Scholar 

  33. A.A. Khan, G. Guyatt, D.S. Ali et al. Management of Hypoparathyroidism. J. Bone Min. Res 37(12), 2663–2677 (2022). https://doi.org/10.1002/jbmr.4716

    Article  CAS  Google Scholar 

  34. S. K. Hans, S. N. Levine, Hypoparathyroidism. In: StatPearls [Internet]. (Treasure Island (FL): StatPearls Publishing, 2022)

  35. B.C. Silva, J.P. Bilezikian, Skeletal abnormalities in hypoparathyroidism and in primary hyperparathyroidism. Rev. Endocr. Metab. Disord. 22(4), 789–802 (2021). https://doi.org/10.1007/s11154-020-09614-0

    Article  PubMed  Google Scholar 

  36. A.M. Formenti, F. Tecilazich, R. Giubbini, A. Giustina, Risk of vertebral fractures in hypoparathyroidism. Rev. Endocr. Metab. Disord. 20(3), 295–302 (2019). https://doi.org/10.1007/s11154-019-09507-x

    Article  CAS  PubMed  Google Scholar 

  37. R. Pal, S.K. Bhadada, S. Mukherjee, M. Banerjee, A. Kumar, Fracture risk in hypoparathyroidism: a systematic review and meta-analysis. Osteoporos. Int 32(11), 2145–2153 (2021). https://doi.org/10.1007/s00198-021-05966-8

    Article  CAS  PubMed  Google Scholar 

  38. C. Cipriani, S. Minisola, J.P. Bilezikian et al. Vertebral fracture assessment in postmenopausal women with postsurgical hypoparathyroidism. J. Clin. Endocrinol. Metab. 106(5), 1303–1311 (2021). https://doi.org/10.1210/clinem/dgab076

    Article  PubMed  PubMed Central  Google Scholar 

  39. E.O. Gosmanova, P. Houillier, L. Rejnmark, C. Marelli, J.P. Bilezikian, Renal complications in patients with chronic hypoparathyroidism on conventional therapy: a systematic literature review : Renal disease in chronic hypoparathyroidism. Rev. Endocr. Metab. Disord. 22(2), 297–316 (2021). https://doi.org/10.1007/s11154-020-09613-1

    Article  PubMed  PubMed Central  Google Scholar 

  40. E.O. Gosmanova, K. Chen, L. Rejnmark et al. Risk of chronic kidney disease and estimated glomerular filtration rate decline in patients with chronic hypoparathyroidism: A retrospective cohort study. Adv. Ther. 38(4), 1876–1888 (2021). https://doi.org/10.1007/s12325-021-01658-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. Ketteler, K. Chen, E.O. Gosmanova et al. Risk of nephrolithiasis and nephrocalcinosis in patients with chronic hypoparathyroidism: A retrospective cohort study. Adv. Ther. 38(4), 1946–1957 (2021). https://doi.org/10.1007/s12325-021-01649-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. I. Levy, C. Licht, A. Daneman, E. Sochett, J. Harrington, The impact of hypoparathyroidism treatment on the kidney in children: Long-term retrospective follow-up study. J. Clin. Endocrinol. Metab. 100(11), 4106–4113 (2015). https://doi.org/10.1210/jc.2015-2257

    Article  CAS  PubMed  Google Scholar 

  43. D.M. Mitchell, S. Regan, M.R. Cooley et al. Long-term follow-up of patients with hypoparathyroidism. J. Clin. Endocrinol. Metab. 97(12), 4507–4514 (2012). https://doi.org/10.1210/jc.2012-1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. E.O. Gosmanova, O. Ayodele, K. Chen et al. Association of calcium and phosphate levels with incident chronic kidney disease in patients with hypoparathyroidism: A Retrospective case-control study. Int J. Endocrinol. 2022, 6078881 (2022). https://doi.org/10.1155/2022/6078881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. K.S. Chen, E.O. Gosmanova, G.C. Curhan et al. Five-year estimated glomerular filtration rate in patients with hypoparathyroidism treated with and without rhPTH(1-84). J. Clin. Endocrinol. Metab. 105(10), e3557–e3565 (2020). https://doi.org/10.1210/clinem/dgaa490

    Article  PubMed  PubMed Central  Google Scholar 

  46. L. Rejnmark, O. Ayodele, A. Lax, F. Mu, E. Swallow, E.O. Gosmanova, The risk of chronic kidney disease development in adult patients with chronic hypoparathyroidism treated with rhPTH(1-84): A retrospective cohort study. Clin. Endocrinol. (Oxf.) 98(4), 496–504 (2023). https://doi.org/10.1111/cen.14813

    Article  CAS  PubMed  Google Scholar 

  47. O. Ayodele, L. Rejnmark, F. Mu et al. Five-year estimated glomerular filtration rate in adults with chronic hypoparathyroidism treated with rhPTH(1-84): A retrospective cohort study. Adv. Ther. 39(11), 5013–5024 (2022). https://doi.org/10.1007/s12325-022-02292-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. F. Tecilazich, A.M. Formenti, S. Frara, R. Giubbini, A. Giustina, Treatment of hypoparathyroidism. Best. Pr. Res Clin. Endocrinol. Metab. 32(6), 955–964 (2018). https://doi.org/10.1016/j.beem.2018.12.002

    Article  CAS  Google Scholar 

  49. L. Yao, J. Li, M. Li et al. Parathyroid hormone therapy for managing chronic hypoparathyroidism: A systematic review and meta-analysis. J. Bone Min. Res 37(12), 2654–2662 (2022). https://doi.org/10.1002/jbmr.4676

    Article  CAS  Google Scholar 

  50. A.A. Khan, J.P. Bilezikian, M.L. Brandi, B.L. Clarke, J.J. Potts, M. Mannstadt, The Second international workshop on the evaluation and management of hypoparathyroidism. J. Bone Min. Res 37(12), 2566–2567 (2022). https://doi.org/10.1002/jbmr.4671

    Article  Google Scholar 

  51. L. Yao, X. Hui, M. Li et al. Complications, symptoms, presurgical predictors in patients with chronic hypoparathyroidism: A systematic review. J. Bone Min. Res 37(12), 2642–2653 (2022). https://doi.org/10.1002/jbmr.4673

    Article  CAS  Google Scholar 

  52. S. Van Uum, M. Shrayyef, I. M’Hiri et al. Initial assessment and monitoring of patients with chronic hypoparathyroidism: A systematic current practice survey. J. Bone Min. Res 37(12), 2630–2641 (2022). https://doi.org/10.1002/jbmr.4698

    Article  CAS  Google Scholar 

  53. A.A. Khan, J.P. Bilezikian, M.L. Brandi et al. Evaluation and management of hypoparathyroidism summary statement and guidelines from the second international workshop. J. Bone Min. Res 37(12), 2568–2585 (2022). https://doi.org/10.1002/jbmr.4691

    Article  Google Scholar 

  54. L. Yao, G. Guyatt, Z. Ye et al. Methodology for the guidelines on evaluation and management of hypoparathyroidism and primary hyperparathyroidism. J. Bone Min. Res 37(11), 2404–2410 (2022). https://doi.org/10.1002/jbmr.4687

    Article  Google Scholar 

  55. A.M. Formenti, F. Tecilazich, S. Frara, R. Giubbini, H. De Luca, A. Giustina, Body mass index predicts resistance to active vitamin D in patients with hypoparathyroidism. Endocrine 66(3), 699–700 (2019). https://doi.org/10.1007/s12020-019-02105-6

    Article  CAS  PubMed  Google Scholar 

  56. A.A. Khan, C.A. Koch, S. Van Uum et al. Standards of care for hypoparathyroidism in adults: A Canadian and International Consensus. Eur. J. Endocrinol. 180(3), P1–P22 (2019). https://doi.org/10.1530/EJE-18-0609

    Article  CAS  PubMed  Google Scholar 

  57. N.B. Watts, J.P. Bilezikian, H.G. Bone et al. Long-term safety and efficacy of recombinant human parathyroid hormone (1-84) in adults with chronic hypoparathyroidism. J. Endocr. Soc. 7(5), bvad043 (2023). https://doi.org/10.1210/jendso/bvad043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. S. Agarwal, D.J. McMahon, J. Chen et al. The clinical and skeletal effects of long-term therapy of hypoparathyroidism with rhPTH(1-84). J. Bone Min. Res 38(4), 480–492 (2023). https://doi.org/10.1002/jbmr.4780

    Article  CAS  Google Scholar 

  59. A.A. Khan, L. Rejnmark, M. Rubin et al. PaTH forward: A randomized, double-blind, placebo-controlled phase 2 trial of TransCon PTH in adult hypoparathyroidism. J. Clin. Endocrinol. Metab. 107(1), e372–e385 (2022). https://doi.org/10.1210/clinem/dgab577

    Article  PubMed  Google Scholar 

  60. A.A. Khan, M.R. Rubin, P. Schwarz et al. Efficacy and safety of parathyroid hormone replacement with TransCon PTH in hypoparathyroidism: 26-week results from the phase 3 PaTHway Trial. J. Bone Min. Res 38(1), 14–25 (2023). https://doi.org/10.1002/jbmr.4726

    Article  CAS  Google Scholar 

  61. H. Noda, M. Okazaki, E. Joyashiki et al. Optimization of PTH/PTHrP hybrid peptides to derive a long-acting PTH analog (LA-PTH). JBMR 4(7), e10367 (2020). https://doi.org/10.1002/jbm4.10367

    Article  CAS  Google Scholar 

  62. R. Bi, Y. Fan, K. Lauter et al. Diphtheria Toxin- and GFP-based mouse models of acquired hypoparathyroidism and treatment with a long-acting parathyroid hormone analog. J. Bone Min. Res 31(5), 975–984 (2016). https://doi.org/10.1002/jbmr.2769

    Article  CAS  Google Scholar 

  63. M. Shimizu, E. Joyashiki, H. Noda et al. Pharmacodynamic actions of a long-acting PTH analog (LA-PTH) in thyroparathyroidectomized (TPTX) rats and normal monkeys. J. Bone Min. Res 31(7), 1405–1412 (2016). https://doi.org/10.1002/jbmr.2811

    Article  CAS  Google Scholar 

  64. P. Kamenicky, I. Takacs, E. Mezosi et al. OR23-04 treatment of chronic hypoparathyroidism with eneboparatide (AZP-3601), a novel PTH 1 receptor agonist: Results from a phase 2 trial. J. Endocr. Soc. 7(Issue Supplement_1), (2023). https://doi.org/10.1210/jendso/bvad114.562

  65. F.M. Hannan, M.A. Nesbit, C. Zhang et al. Identification of 70 calcium-sensing receptor mutations in hyper- and hypo-calcaemic patients: evidence for clustering of extracellular domain mutations at calcium-binding sites. Hum. Mol. Genet. 2012;21(12):2768-2778 https://doi.org/10.1093/hmg/dds105

  66. A.M. Hofer, E.M. Brown, Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 4(7), 530–538 (2003). https://doi.org/10.1038/nrm1154

    Article  CAS  PubMed  Google Scholar 

  67. K.L. Roszko, R.D. Bi, M. Mannstadt, Autosomal dominant hypocalcemia (hypoparathyroidism) types 1 and 2. Front Physiol. 7, 458 (2016). https://doi.org/10.3389/fphys.2016.00458

    Article  PubMed  PubMed Central  Google Scholar 

  68. K.K. Winer, B. Zhang, J.A. Shrader et al. Synthetic human parathyroid hormone 1-34 replacement therapy: A randomized crossover trial comparing pump versus injections in the treatment of chronic hypoparathyroidism. J. Clin. Endocrinol. Metab. 97, 391–399 (2012). https://doi.org/10.1210/jc.2011-1908

    Article  CAS  PubMed  Google Scholar 

  69. R.I. Gafni, L.C. Guthrie, M.H. Kelly et al. Transient increased calcium and calcitriol requirements after discontinuation of human synthetic parathyroid hormone 1-34 (hPTH 1-34) replacement therapy in hypoparathyroidism. J. Bone Min. Res 30(11), 2112–2118 (2015). https://doi.org/10.1002/jbmr.2555

    Article  CAS  Google Scholar 

  70. M. Mannstadt, B.L. Clarke, T. Vokes et al. Efficacy and safety of recombinant human parathyroid hormone (1-84) in hypoparathyroidism (REPLACE): a double-blind, placebo-controlled, randomised, phase 3 study. Lancet Diabetes Endocrinol. 1(4), 275–283 (2013). https://doi.org/10.1016/S2213-8587(13)70106-2

    Article  CAS  PubMed  Google Scholar 

  71. B. Dong, I. Endo, Y. Ohnishi et al. Calcilytic ameliorates abnormalities of mutant calcium-sensing receptor (CaSR) knock-in mice mimicking autosomal dominant hypocalcemia (ADH). J. Bone Min. Res 30(11), 1980–1993 (2015). https://doi.org/10.1002/jbmr.2551

    Article  CAS  Google Scholar 

  72. F.M. Hannan, G.V. Walls, V.N. Babinsky et al. The calcilytic agent NPS 2143 rectifies hypocalcemia in a mouse model with an activating calcium-sensing receptor (CaSR) Mutation: Relevance to autosomal dominant hypocalcemia type 1 (ADH1). Endocrinology 156(9), 3114–3121 (2015). https://doi.org/10.1210/en.2015-1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. M.S. Roberts, R.I. Gafni, B. Brillante et al. Treatment of autosomal dominant hypocalcemia type 1 with the calcilytic NPSP795 (SHP635). J. Bone Min. Res 34(9), 1609–1618 (2019). https://doi.org/10.1002/jbmr.3747

    Article  CAS  Google Scholar 

  74. M. Collins, I. Hartley, S. Adler et al. Encaleret (CLTX-305) normalized mineral homeostasis parameters in patients with autosomal dominant hypocalcemia type 1: Results over 12 months in a phase 2 study (NCT04581629). Endocrine Abstracts. 90 RC8.4 (2023). https://doi.org/10.1530/endoabs.90.RC8.4

  75. G. Mazziotti, S. Frara, A. Giustina, Pituitary diseases and bone. Endocr Rev. 39(4), 440–488 (2018). https://doi.org/10.1210/er.2018-00005

    Article  PubMed  Google Scholar 

  76. G. Mazziotti, T. Porcelli, M. Mormando et al. Vertebral fractures in males with prolactinoma. Endocrine 39(3), 288–293 (2011). https://doi.org/10.1007/s12020-011-9462-5

    Article  CAS  PubMed  Google Scholar 

  77. G. Mazziotti, T. Mancini, M. Mormando et al. High prevalence of radiological vertebral fractures in women with prolactin-secreting pituitary adenomas. Pituitary 14(4), 299–306 (2011). https://doi.org/10.1007/s11102-011-0293-4

    Article  CAS  PubMed  Google Scholar 

  78. L. di Filippo, M. Doga, E. Resmini, A. Giustina, Hyperprolactinemia and bone. Pituitary 23(3), 314–321 (2020). https://doi.org/10.1007/s11102-020-01041-3

    Article  PubMed  Google Scholar 

  79. G. Mazziotti, T. Porcelli, I. Patelli, P.P. Vescovi, A. Giustina, Serum TSH values and risk of vertebral fractures in euthyroid post-menopausal women with low bone mineral density. Bone 46(3), 747–751 (2010). https://doi.org/10.1016/j.bone.2009.10.031

    Article  CAS  PubMed  Google Scholar 

  80. S. Frara, M. Losa, M. Doga et al. High prevalence of radiological vertebral fractures in patients with TSH-secreting pituitary adenoma. J. Endocr. Soc 2(9), 1089–1099 (2018). https://doi.org/10.1210/js.2018-00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. S. Melmed, U.B. Kaiser, M.B. Lopes et al. Clinical Biology of the Pituitary Adenoma. Endocr. Rev. 43(6), 1003–1037 (2022). https://doi.org/10.1210/endrev/bnac010

    Article  PubMed  PubMed Central  Google Scholar 

  82. S. Frara, A. Allora, L. di Filippo et al. Osteopathy in mild adrenal Cushing’s syndrome and Cushing disease. Best. Pr. Res Clin. Endocrinol. Metab. 35(2), 101515 (2021). https://doi.org/10.1016/j.beem.2021.101515

    Article  CAS  Google Scholar 

  83. M. Fleseriu, R. Auchus, I. Bancos et al. Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol. 9(12), 847–875 (2021). https://doi.org/10.1016/S2213-8587(21)00235-7

    Article  PubMed  PubMed Central  Google Scholar 

  84. A. Giustina, W.B. Wehrenberg, The role of glucocorticoids in the regulation of Growth Hormone secretion: mechanisms and clinical significance. Trends Endocrinol. Metab. 3(Oct 8), 306–311 (1992). https://doi.org/10.1016/1043-2760(92)90142-n

    Article  CAS  PubMed  Google Scholar 

  85. A. Giustina, A.R. Bussi, C. Jacobello, W.B. Wehrenberg, Effects of recombinant human growth hormone (GH) on bone and intermediary metabolism in patients receiving chronic glucocorticoid treatment with suppressed endogenous GH response to GH releasing hormone. J Clin Endocrinol Metab. 80(1), 122–129 (1995). https://doi.org/10.1210/jcem.80.1.7829600

    Article  CAS  PubMed  Google Scholar 

  86. G. Mazziotti, A.M. Formenti, S. Frara et al. MANAGEMENT OF ENDOCRINE DISEASE: Risk of overtreatment in patients with adrenal insufficiency: current and emerging aspects. Eur. J. Endocrinol. 177(5), R231–R248 (2017). https://doi.org/10.1530/EJE-17-0154

    Article  CAS  PubMed  Google Scholar 

  87. G. Mazziotti, A.M. Formenti, R.A. Adler et al. Glucocorticoid-induced osteoporosis: pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine 54(3), 603–611 (2016). https://doi.org/10.1007/s12020-016-1146-8

    Article  CAS  PubMed  Google Scholar 

  88. Z.E. Davidson, K.Z. Walker, H. Truby, Clinical review: Do glucocorticosteroids alter vitamin D status? A systematic review with meta-analyses of observational studies. J. Clin. Endocrinol. Metab. 97(3), 738–744 (2012). https://doi.org/10.1210/jc.2011-2757

    Article  CAS  PubMed  Google Scholar 

  89. A.L. Skversky, J. Kumar, M.K. Abramowitz, F.J. Kaskel, M.L. Melamed, Association of glucocorticoid use and low 25-hydroxyvitamin D levels: results from the National Health and Nutrition Examination Survey (NHANES): 2001-2006. J. Clin. Endocrinol. Metab. 96(12), 3838–3845 (2011). https://doi.org/10.1210/jc.2011-1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. A.A. Hidalgo, D.L. Trump, C.S. Johnson, Glucocorticoid regulation of the vitamin D receptor. J. Steroid Biochem Mol. Biol. 121(1-2), 372–375 (2010). https://doi.org/10.1016/j.jsbmb.2010.03.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. A.A. Hidalgo, K.K. Deeb, J.W. Pike, C.S. Johnson, D.L. Trump, Dexamethasone enhances 1alpha,25-dihydroxyvitamin D3 effects by increasing vitamin D receptor transcription. J. Biol. Chem. 286(42), 36228–36237 (2011). https://doi.org/10.1074/jbc.M111.244061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. M.J. Favus, D.V. Kimberg, G.N. Millar, E. Gershon, Effects of cortisone administration on the metabolism and localization of 25-hydroxycholecalciferol in the rat. J. Clin. Invest 52(6), 1328–1335 (1973). https://doi.org/10.1172/JCI107304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. V. Guarnotta, F. Di Gaudio, C. Giordano, Vitamin D deficiency in Cushing’s disease: Before and after its supplementation. Nutrients 14(5), 973 (2022). https://doi.org/10.3390/nu14050973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. E. Paz-Pacheco, G.E. Fuleihan, M.S. LeBoff, Intact parathyroid hormone levels are not elevated in glucocorticoid-treated subjects. J. Bone Min. Res 10(11), 1713–1718 (1995). https://doi.org/10.1002/jbmr.5650101114

    Article  CAS  Google Scholar 

  95. S. Bonadonna, A. Burattin, M. Nuzzo et al. Chronic glucocorticoid treatment alters spontaneous pulsatile parathyroid hormone secretory dynamics in human subjects. Eur. J. Endocrinol. 152(2), 199–205 (2005). https://doi.org/10.1530/eje.1.01841

    Article  CAS  PubMed  Google Scholar 

  96. T. Mancini, G. Mazziotti, M. Doga et al. Vertebral fractures in males with type 2 diabetes treated with rosiglitazone. Bone 45(4), 784–788 (2009). https://doi.org/10.1016/j.bone.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  97. G. Mazziotti, A. Delgado, F. Maffezzoni, A. Formenti, A. Giustina, Skeletal fragility in endogenous hypercortisolism. Front Horm. Res 46, 66–73 (2016). https://doi.org/10.1159/000443866

    Article  CAS  PubMed  Google Scholar 

  98. M. Doga, G. Mazziotti, S. Bonadonna et al. Prevention and treatment of glucocorticoid-induced osteoporosis. J. Endocrinol. Invest 31(7 Suppl), 53–58 (2008)

    CAS  PubMed  Google Scholar 

  99. G. Mazziotti, A. Giustina, Glucocorticoids and the regulation of growth hormone secretion. Nat. Rev. Endocrinol. 9(5), 265–276 (2013). https://doi.org/10.1038/nrendo.2013.5

    Article  CAS  PubMed  Google Scholar 

  100. A.M. Formenti, F. Maffezzoni, M. Doga, G. Mazziotti, A. Giustina, Growth hormone deficiency in treated acromegaly and active Cushing’s syndrome. Best. Pr. Res Clin. Endocrinol. Metab. 31(1), 79–90 (2017). https://doi.org/10.1016/j.beem.2017.03.002

    Article  CAS  Google Scholar 

  101. G. Mazziotti, M. Doga, S. Frara et al. Incidence of morphometric vertebral fractures in adult patients with growth hormone deficiency. Endocrine 52(1), 103–110 (2016). https://doi.org/10.1007/s12020-015-0738-z

    Article  CAS  PubMed  Google Scholar 

  102. R. Zerlotin, A. Oranger, P. Pignataro et al. Irisin and secondary osteoporosis in humans. Int J. Mol. Sci. 23(2), 690 (2022). https://doi.org/10.3390/ijms23020690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. V. Guarnotta, A. Prinzi, M. Pitrone, G. Pizzolanti, C. Giordano, Circulating irisin levels as a marker of osteosarcopenic-obesity in Cushing’s disease. Diabetes Metab. Syndr. Obes. 13, 1565–1574 (2020). https://doi.org/10.2147/DMSO.S249090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. A. Bosman, A.W. van den Beld, R.A. Feelders, M.C. Zillikens, Cortisol and phosphate homeostasis: cushing’s syndrome is associated with reversible hypophosphatemia. Front Endocrinol. (Lausanne) 12, 733793 (2021). https://doi.org/10.3389/fendo.2021.733793

    Article  PubMed  Google Scholar 

  105. M.M. Uygur, S. Frara, L. di Filippo, A. Giustina, New tools for bone health assessment in secreting pituitary adenomas. Trends Endocrinol. Metab. 34(4), 231–242 (2023). https://doi.org/10.1016/j.tem.2023.01.006

    Article  CAS  PubMed  Google Scholar 

  106. T. Apaydın, D.G. Yavuz, Assessment of non-traumatic vertebral fractures in Cushing’s syndrome patients. J. Endocrinol. Invest 44(8), 1767–1773 (2021). https://doi.org/10.1007/s40618-020-01496-y

    Article  CAS  PubMed  Google Scholar 

  107. G. Zavatta, V. Vicennati, P. Altieri et al. Mild autonomous cortisol secretion in adrenal incidentalomas and risk of fragility fractures: A large cross-sectional study. Eur. J. Endocrinol. 188(4), 343–352 (2023). https://doi.org/10.1093/ejendo/lvad038

    Article  PubMed  Google Scholar 

  108. A. Radecka, A. Lubkowska, The significance of dual-energy X-ray absorptiometry (DXA) examination in cushing’s syndrome-A systematic review. Diagnostics (Basel) 13(9), 1576 (2023). https://doi.org/10.3390/diagnostics13091576

    Article  PubMed  Google Scholar 

  109. A. Nowakowska-Płaza, J. Wroński, I. Sudoł-Szopińska, P. Głuszko, Clinical utility of trabecular bone score (TBS) in fracture risk assessment of patients with rheumatic diseases treated with glucocorticoids. Horm. Metab. Res 53(8), 499–503 (2021). https://doi.org/10.1055/a-1528-7261

    Article  CAS  PubMed  Google Scholar 

  110. K.A. Lee, J. Kim, H.J. Kim, H.S. Kim, Discriminative ability of trabecular bone score over bone mineral density for vertebral and fragility fracture in patients treated with long-term and low-dose glucocorticoid. Int J. Rheum. Dis. 24(8), 1053–1060 (2021). https://doi.org/10.1111/1756-185X.14164

    Article  CAS  PubMed  Google Scholar 

  111. F. Ferraù, S. Giovinazzo, Y. Alessi et al. Trabecular bone score, bone marrow fat and vertebral fractures in cushing syndrome. Endocrine 80(2), 441–447 (2023). https://doi.org/10.1007/s12020-023-03318-6

    Article  CAS  PubMed  Google Scholar 

  112. H. Boro, V. Mannar, R. Malhotra et al. Trabecular bone score and bone mineral density as indices of skeletal fragility in endogenous Cushing’s syndrome. Clin. Endocrinol. (Oxf.) 99(3), 253–261 (2023). https://doi.org/10.1111/cen.14944

    Article  CAS  PubMed  Google Scholar 

  113. S. Frara, L. di Filippo, M. Doga, P. Loli, F.F. Casanueva, A. Giustina, Novel approaches to bone comorbidity in Cushing’s disease: An update. Pituitary 25(5), 754–759 (2022). https://doi.org/10.1007/s11102-022-01252-w

    Article  PubMed  Google Scholar 

  114. J. Deng, Z. Silver, E. Huang et al. Pharmacological prevention of fractures in patients undergoing glucocorticoid therapies: A systematic review and network meta-analysis. Rheumatol. (Oxf.) 60(2), 649–657 (2021). https://doi.org/10.1093/rheumatology/keaa228

    Article  CAS  Google Scholar 

  115. L. Jiang, J. Dong, J. Wei, L. Liu, Comparison of denosumab and oral bisphosphonates for the treatment of glucocorticoid-induced osteoporosis: a systematic review and meta-analysis. BMC Musculoskelet. Disord. 23(1), 1027 (2022). https://doi.org/10.1186/s12891-022-05997-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. S.Y. Tamechika, S.I. Ohmura, S. Maeda, T. Naniwa, Efficacy of denosumab on bisphosphonate-treated osteoporosis and osteopenia in systemic rheumatic disease patients receiving glucocorticoids. J. Bone Min. Metab. 41(2), 203–211 (2023). https://doi.org/10.1007/s00774-022-01393-9

    Article  CAS  Google Scholar 

  117. Z.M. Liu, M. Zhang, Y. Zong et al. The efficiency and safety of alendronate versus teriparatide for treatment glucocorticoid-induced osteoporosis: A meta-analysis and systematic review of randomized controlled trials. PLoS One 17(5), e0267706 (2022). https://doi.org/10.1371/journal.pone.0267706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. B. Dong, Y. Zhou, J. Wang et al. Comparison of bisphosphonates versus teriparatide in therapy of the glucocorticoid-induced osteoporosis (GIOP): A meta-analysis of randomized controlled trials. Horm. Metab. Res 55(4), 236–244 (2023). https://doi.org/10.1055/a-2015-1747

    Article  CAS  PubMed  Google Scholar 

  119. A. Giustina, G. Mazziotti, E. Canalis, Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 29(5), 535–559 (2008). https://doi.org/10.1210/er.2007-0036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. A. Giustina, Acromegaly and Vertebral Fractures: Facts and Questions. Trends Endocrinol. Metab. 31(4), 274–275 (2020). https://doi.org/10.1016/j.tem.2020.01.011

    Article  CAS  PubMed  Google Scholar 

  121. A. Giustina, Acromegaly and Bone: An Update. Endocrinol Metab (Seoul). 38(6), 655–666 (2023). https://doi.org/10.3803/EnM.2023.601

    Article  PubMed  Google Scholar 

  122. H. Kwon, K.D. Han, B.S. Kim et al. Acromegaly and the long-term fracture risk of the vertebra and hip: a national cohort study. Osteoporos. Int 34(9), 1591–1600 (2023). https://doi.org/10.1007/s00198-023-06800-z

    Article  CAS  PubMed  Google Scholar 

  123. M.C. Sorohan, C. Poiana, Vertebral fractures in acromegaly: A systematic review. J. Clin. Med 12(1), 164 (2022). https://doi.org/10.3390/jcm12010164

    Article  PubMed  PubMed Central  Google Scholar 

  124. C. Ribeiro de Moura, S. Campos Lopes, A.M. Monteiro, Determinants of skeletal fragility in acromegaly: A systematic review and meta-analysis. Pituitary 25(6), 780–794 (2022). https://doi.org/10.1007/s11102-022-01256-6

    Article  PubMed  Google Scholar 

  125. S. Chiloiro, A. Giampietro, I. Gagliardi et al. Impact of the diagnostic delay of acromegaly on bone health: data from a real life and long term follow-up experience. Pituitary 25(6), 831–841 (2022). https://doi.org/10.1007/s11102-022-01266-4

    Article  PubMed  PubMed Central  Google Scholar 

  126. G. Mazziotti, P. Marzullo, M. Doga, G. Aimaretti, A. Giustina, Growth hormone deficiency in treated acromegaly. Trends Endocrinol. Metab. 26(1), 11–21 (2015). https://doi.org/10.1016/j.tem.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  127. S. Frara, M. Melin Uygur, L. di Filippo et al. High prevalence of vertebral fractures associated with preoperative GH levels in patients with recent diagnosis of acromegaly. J. Clin. Endocrinol. Metab. 107(7), e2843–e2850 (2022). https://doi.org/10.1210/clinem/dgac183

    Article  PubMed  Google Scholar 

  128. P. Ameri, A. Giusti, M. Boschetti, G. Murialdo, F. Minuto, D. Ferone, Interactions between vitamin D and IGF-I: from physiology to clinical practice. Clin. Endocrinol. (Oxf.) 79(4), 457–463 (2013). https://doi.org/10.1111/cen.12268

    Article  CAS  PubMed  Google Scholar 

  129. J. Halupczok-Żyła, A. Jawiarczyk-Przybyłowska, M. Bolanowski, Patients with active acromegaly are at high risk of 25(OH)D deficiency. Front Endocrinol. (Lausanne) 6, 89 (2015). https://doi.org/10.3389/fendo.2015.00089

    Article  PubMed  Google Scholar 

  130. A.A. Povaliaeva, V.P. Bogdanov, A.Y. Zhukov et al. Characterization of vitamin D metabolism in active acromegaly in the setting of bolus (150,000 IU) cholecalciferol treatment. Endocrine 76(2), 407–418 (2022). https://doi.org/10.1007/s12020-022-02994-0

    Article  CAS  PubMed  Google Scholar 

  131. A.E. Altinova, C. Ozkan, M. Akturk et al. Vitamin D-binding protein and free vitamin D concentrations in acromegaly. Endocrine 52(2), 374–379 (2016). https://doi.org/10.1007/s12020-015-0789-1

    Article  CAS  PubMed  Google Scholar 

  132. G. Mazziotti, F. Maffezzoni, A. Giustina, Vitamin D-binding protein: one more piece in the puzzle of acromegalic osteopathy? Endocrine 52(2), 183–186 (2016). https://doi.org/10.1007/s12020-016-0890-0

    Article  CAS  PubMed  Google Scholar 

  133. G. Mazziotti, V. Cimino, E. De Menis et al. Active acromegaly enhances spontaneous parathyroid hormone pulsatility. Metabolism 55(6), 736–740 (2006). https://doi.org/10.1016/j.metabol.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  134. F. Bioletto, M. Barale, N. Prencipe et al. Trabecular bone score as an index of bone fragility in patients with acromegaly: A systematic review and meta-analysis. Neuroendocrinology 113(4), 395–405 (2023). https://doi.org/10.1159/000528199

    Article  CAS  PubMed  Google Scholar 

  135. I. Ságová, M. Mokáň, I. Tonhajzerová, M. Rončáková, P. Vaňuga, Age, body composition parameters and glycaemic control contribute to trabecular bone score deterioration in acromegaly more than disease activity. Front Endocrinol. (Lausanne) 14, 1197725 (2023). https://doi.org/10.3389/fendo.2023.1197725

    Article  PubMed  Google Scholar 

  136. A.P. Kuker, S. Agarwal, E. Shane et al. Persistent deficits in bone quality in treated acromegaly: evidence from assessments of microstructure. J. Endocr. Soc. 7(10), bvad121 (2023). https://doi.org/10.1210/jendso/bvad121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. S. Chiloiro, A. Giampietro, S. Frara et al. Effects of Pegvisomant and Pasireotide LAR on Vertebral Fractures in Acromegaly Resistant to First-generation SRLs. J. Clin. Endocrinol. Metab. 105(3), dgz054 (2020). https://doi.org/10.1210/clinem/dgz054

    Article  PubMed  Google Scholar 

  138. S. Chiloiro, G. Mazziotti, A. Giampietro et al. Effects of pegvisomant and somatostatin receptor ligands on incidence of vertebral fractures in patients with acromegaly. Pituitary 21(3), 302–308 (2018). https://doi.org/10.1007/s11102-018-0873-7

    Article  CAS  PubMed  Google Scholar 

  139. S. Chiloiro, S. Frara, I. Gagliardi et al. Cholecalciferol use is associated with a decreased risk of incident morphometric vertebral fractures in acromegaly. J. Clin. Endocrinol. Metab. 109, e58–e68 (2023). https://doi.org/10.1210/clinem/dgad493

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research activities of Luigi di Filippo are partially supported by Glucocorticoid induced Osteoporosis Skeletal Endocrinology Group (GIOSEG).

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: All authors contributed to the manuscript conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Andrea Giustina.

Ethics declarations

Conflict of interest

A.G. is consultant for Abiogen Pharma S.p.A. and Takeda and received research grant to Institution from Takeda. L.di.F. received research grants to Institution from Abiogen Pharma S.p.A. J.P.B. is consultant for Abiogen Pharma S.p.A. U.T. and E.C. have no conflict of interests to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

di Filippo, L., Bilezikian, J.P., Canalis, E. et al. New insights into the vitamin D/PTH axis in endocrine-driven metabolic bone diseases. Endocrine (2024). https://doi.org/10.1007/s12020-024-03784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03784-6

Keywords

Navigation