Skip to main content

Advertisement

Log in

Evaluation of bone mineral density, microarchitecture, and detection of fractures on young patients living with human immunodeficiency virus: when and how to screen?

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

People living with the human immunodeficiency virus (PLWH) developed higher life expectancy along with chronic bone disease over the past years. Our purpose is to evaluate bone mineral density, bone microarchitecture and fractures in young PLWH and understand the disease’s contribution to bone derangements and fracture risk.

Methods

Eighty-one HIV-infected and 54 control young (20–50 years) male and female subjects were enrolled in this study. Methods for patient evaluation included DXA-VFA (dual energy X-rays and vertebral fracture assessment), HR-pQCT (high resolution peripheral quantitative computed tomography), biochemistry and FRAX.

Results

Fifty participants from each group completed all exams. Median age was 40 (25–49) vs. 36.5 (22–50) for the HIV and control groups, respectively (p 0.120). Ethnicity, body mass index, serum phosphorus, 25-hydroxyvitamin D, PTH and CTX were similar between groups, although ALP and OC suggested higher bone turnover in PLWH. VFA identified morphometric vertebral fractures in 12% of PLWH. PLWH had lower values for lumbar spine areal BMD and Z score, volumetric BMD, trabecular bone fraction (BV/TV) and trabecular number measured at the distal tibia by HR-pQCT; as a consequence, trabecular separation and heterogeneity were higher (all p < 0.05). The FRAX-estimated risk for hip and major osteoporotic fractures was statistically higher in PLWH (p < 0.001).

Conclusion

Our results confirm severe bone impairment and fractures associated with HIV in young patients. Thus, we developed a screening protocol for young PLWH to detect bone fragility, reduce skeletal disease progression and morbimortality, decrease fracture risk, and increase quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W.C. Greene, A history of AIDS: looking back to see ahead. Eur. J. Immunol. 37(1), S94–S102 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. O. Sued, P. Cahn, Latin America priorities after 40 years of the beginning of the HIV pandemic. Lancet Reg. Health Am. 1, 100024 (2021)

    PubMed  PubMed Central  Google Scholar 

  3. Global HIV & AIDS statistics - Fact sheet UNAIDS [Available from: (https://www.unaids.org/en/resources/fact-sheet)

  4. M.T. Yin, T.T. Brown, HIV and bone complications: understudied populations and new management strategies. Curr. HIV/AIDS Rep. 13(6), 349–58. (2016)

    Article  PubMed  Google Scholar 

  5. F. Finnerty, K. Walker-Bone, S. Tariq, Osteoporosis in postmenopausal women living with HIV. Maturitas 95, 50–54 (2017)

    Article  PubMed  Google Scholar 

  6. J.Y. Reginster, C. Beaudart, F. Buckinx, O. Bruyere, Osteoporosis and sarcopenia: two diseases or one? Curr. Opin. Clin. Nutr. Metab. Care 19(1), 31–36 (2016)

    Article  PubMed  Google Scholar 

  7. A.N. Ahmad, S.N. Ahmad, N. Ahmad, HIV infection and bone abnormalities. Open Orthop. J. 11, 777–784 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  8. M.O. Premaor, J.E. Compston, The hidden burden of fractures in people living with HIV. JBMR 2(5), 247–256 (2018)

    Google Scholar 

  9. E. Negredo, A. Bonjoch, B. Clotet, Management of bone mineral density in HIV-infected patients. Expert Opin. Pharmacother. 17(6), 845–852 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. P. Sellier, A. Ostertag, C. Collet, H. Trout, K. Champion, S. Fernandez et al. Disrupted trabecular bone micro-architecture in middle-aged male HIV-infected treated patients. HIV Med. 17(7), 550–556 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. K. Titanji, Beyond antibodies: B cells and the OPG/RANK-RANKL pathway in health, Non-HIV disease and HIV-induced bone loss. Front Immunol. 8, 1851 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  12. T.T. Brown, J. Hoy, M. Borderi, G. Guaraldi, B. Renjifo, F. Vescini et al. Recommendations for evaluation and management of bone disease in HIV. Clin. Infect. Dis. 60(8), 1242–1251 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  13. E. Stein, E. Shane, Secondary osteoporosis. Endocrinol. Metab. Clin. North Am. 32(1), 115–134 (2003).

    Article  PubMed  Google Scholar 

  14. C.A. Moreira, C. Ferreira, M. Madeira, B.C.C. Silva, S.S. Maeda, M.C. Batista et al. Reference values of 25-hydroxyvitamin D revisited: a position statement from the Brazilian society of endocrinology and metabolism (SBEM) and the Brazilian society of clinical pathology/laboratory medicine (SBPC). Arch. Endocrinol. Metab. 64(4), 462–478 (2020)

    PubMed  PubMed Central  Google Scholar 

  15. D.E. Whittier, S.K. Boyd, A.J. Burghardt, J. Paccou, A. Ghasem-Zadeh, R. Chapurlat et al. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos. Int. 31(9), 1607–1627 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D.H. Tan, J. Raboud, L. Szadkowski, E. Szabo, H. Hu, Q. Wong et al. Novel imaging modalities for the comparison of bone microarchitecture among HIV+ patients with and without fractures: a pilot study. HIV Clin. Trials 18(1), 28–38 (2017)

    Article  PubMed  Google Scholar 

  17. T. Ilha, F.V. Comim, R.M. Copes, J.E. Compston, M.O. Premaor, HIV and vertebral fractures: a systematic review and metanalysis. Sci. Rep. 8(1), 7838 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  18. L. Gazzola, A. Savoldi, F. Bai, A. Magenta, M. Dziubak, L. Pietrogrande et al. Assessment of radiological vertebral fractures in HIV-infected patients: clinical implications and predictive factors. HIV Med. 16(9), 563–571 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. B. Young, C.N. Dao, K. Buchacz, R. Baker, J.T. Brooks, Investigators HIVOS. Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000–2006. Clin. Infect. Dis. 52(8), 1061–1068 (2011)

    Article  PubMed  Google Scholar 

  20. C.J. Chang, Y.L. Chan, I. Pramukti, N.Y. Ko, T.W. Tai, People with HIV infection had lower bone mineral density and increased fracture risk: a meta-analysis. Arch. Osteoporos. 16(1), 47 (2021)

    Article  PubMed  Google Scholar 

  21. R. Bedimo, J. Cutrell, S. Zhang, H. Drechsler, A. Gao, G. Brown et al. Mechanisms of bone disease in HIV and hepatitis C virus: impact of bone turnover, tenofovir exposure, sex steroids and severity of liver disease. AIDS 30(4), 601–608 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. M.C. Vlot, M.L. Grijsen, J.M. Prins, R.T. de Jongh, R. de Jonge, M. den Heijer et al. Effect of antiretroviral therapy on bone turnover and bone mineral density in men with primary HIV-1 infection. PLoS One 13(3), e0193679 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  23. E.A. Yu, S. Mehta, Vitamin D and HIV. In: Mehta S, Finkelstein JL, editors. Nutrition and HIV: epidemiological evidence to public health. New York (NY)2018. p. 153-89.

  24. M.T. Yin, A. Shu, C.A. Zhang, S. Boutroy, D.J. McMahon, D.C. Ferris et al. Trabecular and cortical microarchitecture in postmenopausal HIV-infected women. Calcif. Tissue Int. 92(6), 557–565 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. Calmy, T. Chevalley, C. Delhumeau, L. Toutous-Trellu, R. Spycher-Elbes, O. Ratib et al. Long-term HIV infection and antiretroviral therapy are associated with bone microstructure alterations in premenopausal women. Osteoporos. Int 24(6), 1843–1852 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. M.T. Yin, E. Lund, J. Shah, C.A. Zhang, M. Foca, N. Neu et al. Lower peak bone mass and abnormal trabecular and cortical microarchitecture in young men infected with HIV early in life. AIDS 28(3), 345–353 (2014)

    Article  PubMed  Google Scholar 

  27. J.S. Manavalan, S. Arpadi, S. Tharmarajah, J. Shah, C.A. Zhang, M. Foca et al. Abnormal bone acquisition with early-life HIV infection: role of immune activation and senescent osteogenic precursors. J. Bone Min. Res. 31(11), 1988–96. (2016)

    Article  CAS  Google Scholar 

  28. G.J. Kazakia, J. Carballido-Gamio, A. Lai, L. Nardo, L. Facchetti, C. Pasco et al. Trabecular bone microstructure is impaired in the proximal femur of human immunodeficiency virus-infected men with normal bone mineral density. Quant. Imaging Med Surg. 8(1), 5–13 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  29. F.P. Oliveira, L.F.C. Lima, F. de Paula Paranhos Neto, L.M.C. de Mendonca, A. Schtscherbyna, L.A.A. de Lima et al. Lower bone density and microarchitecture alterations in HIV-infected Brazilian men aged 50 years and older are associated with estradiol levels. Clin. Endocrinol. (Oxf.) 97(1), 142–149 (2022)

    Article  CAS  PubMed  Google Scholar 

  30. J.P. Bilezikian, L. Bailey, P.J. Elmer, M.J. Favus, V.L.W. Go, S.R. Goldring et al. Optimal calcium intake. JAMA 272(24), 1942–1948 (1994)

    Article  Google Scholar 

  31. T. Welz, K. Childs, F. Ibrahim, M. Poulton, C.B. Taylor, C.F. Moniz et al. Efavirenz is associated with severe vitamin D deficiency and increased alkaline phosphatase. Aids 24(12), 1923–1928 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. L. Ciullini, A. Pennica, G. Argento, D. Novarini, E. Teti, G. Pugliese et al. Trabecular bone score (TBS) is associated with sub-clinical vertebral fractures in HIV-infected patients. J. Bone Min. Metab. 36(1), 111–118 (2018)

    Article  Google Scholar 

  33. E. Negredo, A.H. Warriner, Pharmacologic approaches to the prevention and management of low bone mineral density in HIV-infected patients. Curr. Opin. HIV AIDS 11(3), 351–357 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. S. Ferrari, M.L. Bianchi, J.A. Eisman, A.J. Foldes, S. Adami, D.A. Wahl et al. Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos. Int 23(12), 2735–2748 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. O. Makitie, M.C. Zillikens, Early-onset osteoporosis. Calcif. Tissue Int 110(5), 546–61. (2022)

    Article  CAS  PubMed  Google Scholar 

  36. P. Makras, P. Petrikkos, A.D. Anastasilakis, A. Kolynou, A. Katsarou, O. Tsachouridou et al. Denosumab versus zoledronate for the treatment of low bone mineral density in male HIV-infected patients. Bone Rep. 15, 101128 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by B.G., M.L.F.F., L.E.W., G.I.F., V.R., R.B., F.de P.P.N., L.M.C.de M., M.M. and M.C.A.C. The first draft of the manuscript was written by Bárbara Gehrke and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bárbara Gehrke.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Ethics

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee of the Hospital Universitário Pedro Ernesto from Universidade do Estado do Rio de Janeiro and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gehrke, B., Farias, M.L.F., Wildemberg, L.E. et al. Evaluation of bone mineral density, microarchitecture, and detection of fractures on young patients living with human immunodeficiency virus: when and how to screen?. Endocrine 83, 214–226 (2024). https://doi.org/10.1007/s12020-023-03501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03501-9

Keywords

Navigation