Skip to main content
Log in

Chronic hypoparathyroidism is associated with increased cortical bone density evaluated using high-resolution peripheral quantitative computed tomography

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

This cross-sectional study aimed to assess bone mineral density (BMD), bone microarchitecture and fracture prevalence in women with chronic postsurgical hypoparathyroidism (hypoPT).

Methods

Twenty-seven women with postsurgical hypoPT and 44 age-matched healthy women were included. Dual-energy X-ray absorptiometry was used to evaluate areal BMD and vertebral fracture assessment. High-resolution peripheral quantitative computed tomography assessed microarchitecture and volumetric BMD at the distal radius and tibia. Biochemical parameters, including fibroblast growth factor 23, C-terminal cross-linking telopeptide of type I collagen (ICTP), and procollagen type I N-terminal propeptide (P1NP), were also measured. Previous low-impact fractures were assessed and the 10-year fracture risk was estimated using the FRAX tool for the Brazilian population.

Results

No participant had prevalent clinical fractures, and both groups showed low risk for major and hip based on FRAX tool, but two hypoPT patients had moderate to severe morphometric vertebral fractures. Women with hypoPT had increased aBMD in the lumbar spine, femoral neck and total hip (p < 0.05) and higher cortical vBMD in the radius (p = 0.020) and tibia (p < 0.001). Trabecular bone was not affected. Both P1NP and ICTP suggested low bone turnover rates, but no significant correlation was observed between bone density or microstructure and any of the biochemical parameters.

Conclusions

The prevalence of fragility fractures was low in HypoPT women and compatible with low fracture risk estimated by the FRAX tool. Patients had a higher aBMD and cortical vBMD than those of healthy control women, but the association with decreased bone turnover remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.L. Clarke, E.M. Brown, M.T. Collins, H. Jüppner, Epidemiology and diagnosis of hypoparathyroidism. J. Clin. Endocrinol. Metab. 101(6), 2284–2299 (2016). https://doi.org/10.1210/jc.2015-3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R.I. Gafni, M.T. Collins, Hypoparathyroidism. N. Engl. J. Med 380(18), 1738–1747 (2019). https://doi.org/10.1056/nejmcp1800213

    Article  PubMed  Google Scholar 

  3. B.C. Silva, M.R. Rubin, N.E. Cusano, J.P. Bilezikian, Bone imaging in hypoparathyroidism. Osteoporos. Int 28(2), 463–471 (2017). https://doi.org/10.1007/s00198-016-3750-0

    Article  CAS  PubMed  Google Scholar 

  4. N.E. Cusano, K.K. Nishiyama, C. Zhang, M.R. Rubin, S. Boutroy, Noninvasive assessment of skeletal microstructure and estimated bone strength in hypoparathyroidism. J. Bone Min. Res. 31(2), 308–316 (2016). https://doi.org/10.1002/jbmr.2609

    Article  Google Scholar 

  5. M.R. Rubin, D.W. Dempster, H. Zhou, E. Shane, Dynamic and structural properties of the skeleton in hypoparathyroidism. J. Bone Min. Res. 23(12), 2018–2024 (2008). https://doi.org/10.1359/jbmr.080803

    Article  CAS  Google Scholar 

  6. D.M. Mitchell, S. Regan, M.R. Cooley, K.B. Lauter, Long-term follow-up of patients with hypoparathyroidism. J. Clin. Endocrinol. Metab. 97(12), 4507–4514 (2012). https://doi.org/10.1210/jc.2012-1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B.A. Laway, R. Goswami, N. Singh, N. Gupta, Pattern of bone mineral density in patients with sporadic idiopathic hypoparathyroidism. Clin. Endocrinol. 64(4), 405–409 (2006). https://doi.org/10.1111/j.1365-2265.2006.02479.x

    Article  CAS  Google Scholar 

  8. N.E. Cusano, M.R. Rubin, J.M. Williams, S. Agarwal. Changes in skeletal microstructure through four continuous years of rhPTH (1-84) therapy in hypoparathyroidism. J. Bone Min. Res. 35(7), 1274–1281 (2020). https://doi.org/10.1002/jbmr.4005

    Article  CAS  Google Scholar 

  9. J. Liu, S. Chen, T. Quan, Y. Wang, Bone microstructure of adult patients with non-surgical hypoparathyroidism assessed by high-resolution peripheral quantitative computed tomography. Osteoporos. Int. 31(11), 2219–2230 (2020). https://doi.org/10.1007/s00198-020-05506-w

    Article  CAS  PubMed  Google Scholar 

  10. R. Pal, S.K. Bhadada, S. Mukherjee, M. Banerjee, Fracture risk in hypoparathyroidism: a systematic review and meta-analysis. Osteoporos. Int. 32(11), 2145–2153 (2021). https://doi.org/10.1007/s00198-021-05966-8

    Article  CAS  PubMed  Google Scholar 

  11. A.M. Formenti, F. Tecilazich, R. Giubbini, A. Giustina, Risk of vertebral fractures in hypoparathyroidism. Rev. Endocr. Metab. Disord. 20(3), 295–302 (2019). https://doi.org/10.1007/s11154-019-09507-x

    Article  CAS  PubMed  Google Scholar 

  12. K. Fujiyama, T. Kiriyama, M. Ito, K. Nakata, Attenuation of postmenopausal high turnover bone loss in patients with hypoparathyroidism. J. Clin. Endocrinol. Metab. 37(12), 2860–2865 (1995). https://doi.org/10.1210/jcem.80.7.7608266

    Article  Google Scholar 

  13. M.L. Mendonça, F.A. Pereira, M.H. Nogueira-Barbosa, L.M. Monsignore, Increased vertebral morphometric fracture in patients with postsurgical hypoparathyroidism despite normal bone mineral density. BMC Endocr. Disord. 3(13), 1 (2013). https://doi.org/10.1186/1472-6823-13-1

    Article  CAS  Google Scholar 

  14. H. Chawla, S. Saha, D. Kandasamy, R. Sharma, Vertebral fractures and bone mineral density in patients with idiopathic hypoparathyroidism on long-term follow-up. J. Clin. Endocrinol. Metab. 102(1), 251–258 (2017). https://doi.org/10.1210/jc.2016-3292

    Article  PubMed  Google Scholar 

  15. L. Underbjerg, T. Sikjaer, L. Mosekilde, L. Rejnmark, Postsurgical hypoparathyroidism–risk of fractures, psychiatric diseases, cancer, cataract, and infections. J. Bone Min. Res. 29(11), 2504–2510 (2014). https://doi.org/10.1002/jbmr.2273

    Article  Google Scholar 

  16. L. Underbjerg, T. Sikjaer, L. Mosekilde, L. Rejnmark, The epidemiology of nonsurgical hypoparathyroidism in Denmark: a nationwide case finding study. J. Bone Min. Res. 29(11), 2504–2510 (2015). https://doi.org/10.1002/jbmr.2501

    Article  CAS  Google Scholar 

  17. T. Vadiveloo, P.T. Donnan, C.J. Leese, K.J. Abraham, Increased mortality and morbidity in patients with chronic hypoparathyroidism: A population-based study. Clin. Endocrinol. 90(2), 285–292 (2019). https://doi.org/10.1111/cen.13895

    Article  CAS  Google Scholar 

  18. C. Cipriani, S. Minisola, J.P. Bilezikian, D. Diacint, Vertebral fracture assessment in postmenopausal women with postsurgical hypoparathyroidism. J. Clin. Endocrinol. Metab. 106(5), 1303–1311 (2021). https://doi.org/10.1210/clinem/dgab076

    Article  PubMed  PubMed Central  Google Scholar 

  19. T.A. Ikizler, J.D. Burrowes, L.D. Byham-Gray, K.L. Campbell KL, KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Am. J. Kidney Dis. 76(3), S1–S107 (2020). https://doi.org/10.1053/j.ajkd.2020.05.006

    Article  CAS  PubMed  Google Scholar 

  20. A.S. Levey, L.A. Stevens, C.H. Schmid, Y.L. Zhang, A.F. Castro 3rd, H.I. Feldman, J.W. Kusek, P. Eggers, F. Van Lente, T. Greene, J. Coresh, A new equation to estimate glomerular filtration rate. Ann. Intern Med. 150(9), 604–612 (2009). https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  21. J.R. Weir-McCall, P.S. Liu-Shiu-Cheong, A.D. Struthers, B.J. Lipworth, Disconnection of pulmonary and systemic arterial stiffness in COPD. Int J. Chron. Obstruct Pulmon Dis. 28(13), 1755–1765 (2018). https://doi.org/10.2147/copd.s160077

    Article  CAS  Google Scholar 

  22. J. Cassuto, A. Folestad, J. Göthlin, H. Malchau, The key role of proinflammatory cytokines, matrix proteins, RANKL/OPG and Wnt/β-catenin in bone healing of hip arthroplasty patients. Bone 107, 66–77 (2018). https://doi.org/10.1016/j.bone.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  23. S. Yilmaz-Oner, G. Ozen, M. Can, P. Atagunduz, Biomarkers in remission according to different criteria in patients with rheumatoid arthritis. J. Rheumatol. 42(11), 2066–2070 (2015). https://doi.org/10.3899/jrheum.150478

    Article  CAS  PubMed  Google Scholar 

  24. J.T. Schousboe, T. Vokes, S.B. Broy, L. Ferrar, Vertebral fracture assessment: the 2007 ISCD official positions. J. Clin. Densitom. 11(1), 92–108 (2008). https://doi.org/10.1016/j.jocd.2007.12.008

    Article  PubMed  Google Scholar 

  25. H.K. Genant, J. Li, C.Y. Wu, J.A. Shepherd, Vertebral fractures in osteoporosis: a new method for clinical assessment. J. Clin. Densitom. 3(3), 281–290 (2000). https://doi.org/10.1385/jcd:3:3:281

    Article  CAS  PubMed  Google Scholar 

  26. C.A.F. Zerbini, V.L. Szejnfeld, B.H. Albergaria, E.V. McCloskey, H. Johansson, J.A. Kanis, Incidence of hip fracture in Brazil and the development of a FRAX model. Arch. Osteoporos. 10, 224 (2015). https://doi.org/10.1007/s11657-015-0224-5

    Article  CAS  PubMed  Google Scholar 

  27. J.T. Schousboe, J.A. Shepherd, J.P. Bilezikian, S. Baim, Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J. Clin. Densitom. 16(4), 455–466 (2013). https://doi.org/10.1016/j.jocd.2013.08.004

    Article  PubMed  Google Scholar 

  28. D.E. Whittier, S.K. Boyd, A.J. Burghardt, J. Paccou, Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos. Int. 31(9), 1607–1627 (2020). https://doi.org/10.1007/s00198-020-05438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. H. Fuller, R. Fuller, R.M. Pereira, High resolution peripheral quantitative computed tomography for the assessment of morphological and mechanical bone parameters. Rev. Bras. Reumatol. 55(4), 352–362 (2015). https://doi.org/10.1016/j.rbr.2014.07.010

    Article  PubMed  Google Scholar 

  30. C.P. Figueiredo, M.O. Perez, L.P. Sales, G. Schett, R.M.R. Pereira, HR-pQCT in vivo imaging of periarticular bone changes in chronic inflammatory diseases: Data from acquisition to impact on treatment indications. Mod. Rheumatol. 31(2), 294–302 (2021). https://doi.org/10.1080/14397595.2020.1804669

    Article  PubMed  Google Scholar 

  31. T. Sikjaer, L. Rejnmark, L. Rolighed, L. Heickendorff, The effect of adding PTH (1-84) to conventional treatment of hypoparathyroidism: a randomized, placebo-controlled study. J. Bone Min. Res. 26(10), 2358–2370 (2011). https://doi.org/10.1002/jbmr.470

    Article  CAS  Google Scholar 

  32. Y. Takamura, A. Miyauchi, T. Yabuta, M. Kihara, Attenuation of postmenopausal bone loss in patients with transient hypoparathyroidism after total thyroidectomy. World J. Surg. 37(12), 2860–2865 (2013). https://doi.org/10.1007/s00268-013-2207-2

    Article  PubMed  Google Scholar 

  33. S. Abugassa, J. Nordenström, S. Eriksson, G. Sjödén, Bone mineral density in patients with chronic hypoparathyroidism. J. Clin. Endocrinol. Metab. 76(6), 1617–1621 (1993). https://doi.org/10.1210/jcem.76.6.8501170

    Article  CAS  PubMed  Google Scholar 

  34. F.K. Chan, S.C. Tiu, K.L. Choi, C.H. Choi, Increased bone mineral density in patients with chronic hypoparathyroidism. J. Clin. Endocrinol. Metab. 88(7), 3155–3159 (2003). https://doi.org/10.1210/jc.2002-021388

    Article  CAS  PubMed  Google Scholar 

  35. F. Saki, S.R. Kassaee, A. Salehifar, G.H.R. Omrani, Interaction between serum FGF- 23 and PTH in renal phosphate excretion, a case-control study in hypoparathyroid patients. BMC Nephrol. 21(1), 176 (2020). https://doi.org/10.1186/s12882-020-01826-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D. Ovejero, I.R. Hartley, L.F. de Castro Diaz, E. Theng, PTH and FGF23 exert interdependent effects on renal phosphate handling: evidence from patients with hypoparathyroidism and hyperphosphatemic familial tumoral calcinosis treated with synthetic human PTH 1-34. J. Bone Min. Res. 37(2), 179–184 (2022). https://doi.org/10.1002/jbmr.4429

    Article  CAS  Google Scholar 

  37. T. Rupp, S. Butscheidt, E. Vettorazzi, R. Oheim, High FGF23 levels are associated with impaired trabecular bone microarchitecture in patients with osteoporosis. Osteoporos. Int. 30(8), 1655–1662 (2019). https://doi.org/10.1007/s00198-019-04996-7

    Article  CAS  PubMed  Google Scholar 

  38. M.R. Rubin, D.W. Dempster, J. Sliney Jr., H. Zhou, PTH (1-84) administration reverses abnormal bone-remodeling dynamics and structure in hypoparathyroidism. J. Bone Min. Res. 26(11), 2727–2736 (2011). https://doi.org/10.1002/jbmr.45

    Article  CAS  Google Scholar 

  39. R.I. Gafni, J.S. Brahim, P. Andreopoulou, N. Bhattacharyya, Daily parathyroid hormone 1-34 replacement therapy for hypoparathyroidism induces marked changes in bone turnover and structure. J. Bone Min. Res. 27(8), 1811–1820 (2012). https://doi.org/10.1002/jbmr.1627

    Article  CAS  Google Scholar 

Download references

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by R.G.S.R., S.P., A.P., C.P.G., L.F.C.L., F.d.P.P.N., L.M.C.d.M., M.L.F.F. and M.M. The first draft of the manuscript was written by R.G.S.R., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by FINEP (grant numbers 01.16.0079.00); a brazilian public company for the promotion of science, technology and research. FINEP had no involvement in study design, data collection, analysis and interpretation, as well as conclusion and article submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Gervais Santa Rosa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. The study was approved by the Research Ethics Committee and registered at Plataforma Brazil (CAAE 93448618.4.0000.5257).

Informed consent

Informed consent was obtained from all the individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santa Rosa, R.G., Polonine, S., Pichone, A. et al. Chronic hypoparathyroidism is associated with increased cortical bone density evaluated using high-resolution peripheral quantitative computed tomography. Endocrine 82, 673–680 (2023). https://doi.org/10.1007/s12020-023-03495-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03495-4

Keywords

Navigation