Skip to main content

Advertisement

Log in

Loss of STARD13 contributes to aggressive phenotype transformation and poor prognosis in papillary thyroid carcinoma

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

StAR Related Lipid Transfer Domain Containing 13 (STARD13) serves as a tumor suppressor and has been characterized in several types of malignancies. However, the role and the molecular mechanism of STARD13 in regulating the progression of papillary thyroid carcinoma (PTC) remain underexplored.

Methods

The gene expression and clinical information of thyroid cancer were downloaded using “TCGAbiolinks” R package. Quantitative PCR and immunohistochemical staining were conducted to detect the expression of STARD13 in clinical tumor and adjacent non-tumor samples. Wound-healing assay, Transwell assay and 3D spheroid invasion assay were performed to evaluate the migratory and invasive capacities of PTC cells. Cell proliferation ability was determined by CCK-8 assay, colony formation assay and 5-ethynyl-2’-deoxyuridine (EdU) incorporation assay. The alterations of indicated proteins were detected by Western blotting.

Results

In the present study, we found that STARD13 was significantly underexpressed in PTC, which was correlated with poor prognosis. Downregulation of STARD13 might be due to methylation of promoter region. Loss-and gain-of-function experiments demonstrated that STARD13 impeded migratory and invasive capacities of PTC cells in vitro and in vivo. In addition, we found that STARD13 regulated the morphology of PTC cells and inhibited epithelial-mesenchymal transition (EMT).

Conclusion

Our results suggest that STARD13 acts as a metastasis suppressor and might be a potential therapeutic target in PTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All GSE datasets analyzed during the current study are available in the GEO repository, http://www.ncbi.nlm.nih.gov/gds. The RNA sequencing data of TCGA-THCA dataset can be obtained from TCGA, https://cancergenome.nih.gov/. The clinical information of TCGA-THCA dataset and DNA methylation data are accessible at UCSC Xena browser, https://xena.browser.net/.

References

  1. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)

    Article  PubMed  Google Scholar 

  2. F. Basolo, E. Macerola, A.M. Poma, L. Torregrossa, The 5(th) edition of WHO classification of tumors of endocrine organs: changes in the diagnosis of follicular-derived thyroid carcinoma. Endocrine 80(3), 470–476 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. T. Yan, W. Qiu, J. Song, Y. Fan, Z. Yang, ARHGAP36 regulates proliferation and migration in papillary thyroid carcinoma cells. J. Mol. Endocrinol. 66(1), 1–10 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. L. Torregrossa, D. Viola, E. Sensi, M. Giordano, Piaggi, C. Romei et al. Papillary thyroid carcinoma with rare exon 15 BRAF mutation has indolent behavior: a single-institution experience. J. Clin. Endocrinol. Metab. 101(11), 4413–4420 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. H. Guan, Y. Guo, L. Liu, R. Ye, W. Liang, H. Li et al. INAVA promotes aggressiveness of papillary thyroid cancer by upregulating MMP9 expression. Cell Biosci. 8, 26 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  6. S. El-Sitt, B.D. Khalil, S. Hanna, M. El-Sabban, N. Fakhreddine, M. El-Sibai, DLC2/StarD13 plays a role of a tumor suppressor in astrocytoma. Oncol. Rep. 28(2), 511–8 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. Y. Ching, C.M. Wong, S.F. Chan, T.H. Leung, D.C. Ng, D.Y. Jin et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. J. Biol. Chem. 278(12), 10824–30 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. V. Ullmannova, N.C. Popescu, Expression profile of the tumor suppressor genes DLC-1 and DLC-2 in solid tumors. Int. J. Oncol. 29(5), 1127–32 (2006)

    CAS  PubMed  Google Scholar 

  9. T.H. Leung, Y. Ching, J.W. Yam, C.M. Wong, T.O. Yau, D.Y. Jin et al. Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. Proc. Natl Acad. Sci. USA 102(42), 15207–12 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T.H. Leung, J.W. Yam, L.K. Chan, Y.P. Ching, I.O. Ng, Deleted in liver cancer 2 suppresses cell growth via the regulation of the Raf-1-ERK1/2-p70S6K signalling pathway. Liver Int. 30(9), 1315–23 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. F. Gao, X. Yu, R. Meng, J. Wang, L. Jia, STARD13 is positively correlated with good prognosis and enhances 5-FU sensitivity via suppressing cancer stemness in hepatocellular carcinoma cells. Onco Targets Ther. 11, 5371–5381 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. F. Tang, R. Zhang, Y. He, M. Zou, L. Guo, T. Xi, MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells. PLoS One 7(5), e35435 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Chang, S. He, G. Qiu, J. Lu, J. Wang, J. Liu et al. MicroRNA-125b promotes invasion and metastasis of gastric cancer by targeting STARD13 and NEU1. Tumour Biol. 37(9), 12141–12151 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. M. Wu, X. Tan, P. Liu, Y. Yang, Y. Huang, X. Liu et al. Role of exosomal microRNA-125b-5p in conferring the metastatic phenotype among pancreatic cancer cells with different potential of metastasis. Life Sci. 255, 117857 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Lu, W. Zheng, X. Rao, Y. Du, J. Xue, MicroRNA-9-5p facilitates lung adenocarcinoma cell malignant progression via targeting STARD13. Biochem. Genet. 60(6), 1865–1880 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. L. Chen, W. Hu, G. Li, Y. Guo, Z. Wan, J. Yu, Inhibition of miR-9-5p suppresses prostate cancer progress by targeting StarD13. Cell Mol. Biol. Lett. 24, 20 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  17. X. Xu, S. Zheng, MiR-887-3p negatively regulates STARD13 and promotes pancreatic cancer progression. Cancer Manag. Res. 12, 6137–6147 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Qian, Y. Zhang, H. Ji, Y. Shen, L. Zheng, S. Cheng et al. LINC01089 suppresses lung adenocarcinoma cell proliferation and migration via miR-301b-3p/STARD13 axis. BMC Pulm. Med. 21(1), 242 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Cai, J. Zhao, N. Zhang, X. Xu, R. Li, Y. Yi et al. MicroRNA-542-3p suppresses tumor cell invasion via targeting AKT pathway in human astrocytoma. J. Biol. Chem. 290(41), 24678–88 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. W. Liang, H. Guan, X. He, W. Ke, L. Xu, L. Liu et al. Down-regulation of SOSTDC1 promotes thyroid cancer cell proliferation via regulating cyclin A2 and cyclin E2. Oncotarget 6(31), 31780–91 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  21. A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102(43), 15545–50 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. W. He, Y. Sun, J. Ge, X. Wang, B. Lin, S. Yu et al. STRA6 regulates tumor immune microenvironment and is a prognostic marker in BRAF-mutant papillary thyroid carcinoma. Front Endocrinol. (Lausanne) 14, 1076640 (2023)

    Article  PubMed  Google Scholar 

  23. N. Cancer Genome Atlas Research, Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3), 676–90 (2014)

    Article  Google Scholar 

  24. M. Xing, A.S. Alzahrani, K.A. Carson, Y.K. Shong, T.Y. Kim, D. Viola et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J. Clin. Oncol. 33(1), 42–50 (2015)

    Article  PubMed  Google Scholar 

  25. W. Pu, X. Shi, P. Yu, M. Zhang, Z. Liu, L. Tan et al. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat. Commun. 12(1), 6058 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. H. Tang, L. Jiang, C. Zhu, R. Liu, Y. Wu, Q. Yan et al. Loss of cell adhesion molecule L1 like promotes tumor growth and metastasis in esophageal squamous cell carcinoma. Oncogene 38(17), 3119–3133 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. Z. Miao, Q. Cao, R. Liao, X. Chen, X. Li, L. Bai et al. Elevated transcription and glycosylation of B3GNT5 promotes breast cancer aggressiveness. J. Exp. Clin. Cancer Res. 41(1), 169 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D.S. Chandrashekar, S.K. Karthikeyan, P.K. Korla, H. Patel, A.R. Shovon, M. Athar et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia 25, 18–27 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L. Jaafar, I. Fakhoury, S. Saab, L. El-Hajjar, W. Abou-Kheir, M. El-Sibai, StarD13 differentially regulates migration and invasion in prostate cancer cells. Hum. Cell 34(2), 607–623 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. L. Sun, J. Sun, J.D. Song, High expression of DLC family proteins predicts better prognosis and inhibits tumor progression in NSCLC. Mol. Med. Rep. 19(6), 4881–4889 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. S. Hanna, B. Khalil, A. Nasrallah, B.A. Saykali, R. Sobh, S. Nasser et al. StarD13 is a tumor suppressor in breast cancer that regulates cell motility and invasion. Int J. Oncol. 44(5), 1499–511 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Nasrallah, B. Saykali, S. Al Dimassi, N. Khoury, S. Hanna, M. El-Sibai, Effect of StarD13 on colorectal cancer proliferation, motility and invasion. Oncol. Rep. 31(1), 505–15 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. Z. Huang, Z. Zhang, C. Zhou, L. Liu, C. Huang, Epithelial-mesenchymal transition: the history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (2020). 3(2), e144 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. L. Jaafar, Z. Chamseddine, M. El-Sibai, StarD13: a potential star target for tumor therapeutics. Hum. Cell 33(3), 437–443 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. M. Al Haddad, R. El-Rif, S. Hanna, L. Jaafar, R. Dennaoui, S. Abdellatef et al. Differential regulation of rho GTPases during lung adenocarcinoma migration and invasion reveals a novel role of the tumor suppressor StarD13 in invadopodia regulation. Cell Commun. Signal 18(1), 144 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Z. Yang, H. Chen, M. Shu, Y. Zhang, L. Xue, Y. Lin, DLC2 operates as a tumor suppressor gene in breast cancer via the RhoGTPase pathway. Oncol. Lett. 17(2), 2107–2116 (2019)

    CAS  PubMed  Google Scholar 

  37. A.C. Braun, M.A. Olayioye, Rho regulation: DLC proteins in space and time. Cell Signal 27(8), 1643–51 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. D. Bar-Sagi, A. Hall, Ras and Rho GTPases: a family reunion. Cell 103(2), 227–38 (2000)

    Article  CAS  PubMed  Google Scholar 

  39. E. Sahai, C.J. Marshall, RHO-GTPases and cancer. Nat. Rev. Cancer 2(2), 133–42 (2002)

    Article  PubMed  Google Scholar 

  40. J. Chen, C. Jiang, L. Fu, C.L. Zhu, Y.Q. Xiang, L.X. Jiang et al. CHL1 suppresses tumor growth and metastasis in nasopharyngeal carcinoma by repressing PI3K/AKT signaling pathway via interaction with Integrin beta1 and Merlin. Int J. Biol. Sci. 15(9), 1802–1815 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. B.D. Khalil, S. Hanna, B.A. Saykali, S. El-Sitt, A. Nasrallah, D. Marston et al. The regulation of RhoA at focal adhesions by StarD13 is important for astrocytoma cell motility. Exp. Cell Res. 321(2), 109–22 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. S. Abdellatef, I. Fakhoury, M.A. Haddad, L. Jaafar, H. Maalouf, S. Hanna et al. StarD13 negatively regulates invadopodia formation and invasion in high-grade serous (HGS) ovarian adenocarcinoma cells by inhibiting Cdc42. Eur. J. Cell Biol. 101(1), 151197 (2022)

    Article  CAS  PubMed  Google Scholar 

  43. M.A. Nieto, R.Y. Huang, R.A. Jackson, J.P. Thiery, Emt: 2016. Cell 166(1), 21–45 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. X. Li, L. Zheng, F. Zhang, J. Hu, J. Chou, Y. Liu et al. STARD13-correlated ceRNA network inhibits EMT and metastasis of breast cancer. Oncotarget 7(17), 23197–211 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  45. J. Hu, X. Li, X. Guo, Q. Guo, C. Xiang, Z. Zhang et al. The CCR2 3’UTR functions as a competing endogenous RNA to inhibit breast cancer metastasis. J. Cell Sci. 130(19), 3399–3413 (2017)

    CAS  PubMed  Google Scholar 

  46. L. Zheng, C. Xiang, X. Li, Q. Guo, L. Gao, H. Ni et al. STARD13-correlated ceRNA network-directed inhibition on YAP/TAZ activity suppresses stemness of breast cancer via co-regulating Hippo and Rho-GTPase/F-actin signaling. J. Hematol. Oncol. 11(1), 72 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The funding for this project was provided by the National Natural Science Foundation of China (No. 82073050); Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515012046); Guangzhou Technology Project (No. 202102080311).

Author information

Authors and Affiliations

Authors

Contributions

G.H.Y., L.Y.B. & X.H.P. conceived, designed and supervised the research and revised the manuscript. Z.C.M. & C.J.X. performed the experiments. Z.C.M., L.H. & L.W.W. analyzed the data. Z.C.M. wrote the manuscript. Z.Y.L. took part in the animal experiments. Z.H.R. collected clinical samples. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yanbing Li or Hongyu Guan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

The experimental protocols of our study were performed in accordance with the Helsinki Declaration and its later amendments and approved by the Institutional Research Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University. All patients have signed written informed consent. The animal experiments in this study were approved by the Institutional Animal Care and Use Committee of Sun Yat-sen University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Li, H., Liang, W. et al. Loss of STARD13 contributes to aggressive phenotype transformation and poor prognosis in papillary thyroid carcinoma. Endocrine 83, 127–141 (2024). https://doi.org/10.1007/s12020-023-03468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03468-7

Keywords

Navigation