Skip to main content

Advertisement

Log in

Association between the atherogenic index of plasma and carotid artery plaques in patients with coronary heart disease in different glucose metabolism states: an RCSCD-TCM study in Tianjin, China

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

The atherogenic index of plasma (AIP) is considered a powerful biomarker of dyslipidemia and atherosclerosis (AS). However, limited evidence is available regarding the relationship between the AIP and carotid artery plaques (CAPs) in patients with coronary heart disease (CHD).

Methods

This retrospective study included 9281 patients with CHD who underwent carotid ultrasound. Participants were divided according to the AIP tertiles: T1, AIP < 1.02; T2, 1.02 ≤ AIP < 1.25; and T3, AIP ≥ 1.25. The presence or absence of CAPs was assessed using carotid ultrasound. Logistic regression was used to analyze the relationship between the AIP and CAPs in patients with CHD. The relationship between the AIP and CAPs was assessed according to sex, age, and glucose metabolic status.

Results

The baseline characteristics revealed significant differences in related parameters among patients with CHD after stratification into the three groups according to the AIP tertiles. Compared with T1, the odds ratio (OR) of T3 in patients with CHD was 1.53 (95% confidence interval [CI]:1.35–1.74). The association between AIP and CAPs was higher in females (OR: 1.63; 95% CI: 1.38–1.92) than in males (OR: 1.38; 95% CI: 1.12–1.70). The OR for patients aged ≤60 years (OR: 1.40; 95% CI: 1.14–1.71) was lower than that for patients aged >60 years (OR: 1.49; 95% CI: 1.26–1.76). AIP was significantly associated with the risk of CAPs formation in different glucose metabolic states, with diabetes having the highest OR value (OR: 1.31; 95% CI: 1.19–1.43).

Conclusion

The AIP and CAPs were significantly associated in patients with CHD, and the association was higher in female than in male patients. The association was lower in patients aged ≤60 years than in patients aged >60 years. Under different glucose metabolism statuses, the association between the AIP and the CAPs among patients with CHD was highest in patients with diabetes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets used and/or analyzed in this study are available from the corresponding author upon reasonable request.

Abbreviations

AIP:

The atherogenic index of plasma

AS:

Atherosclerosis

CAD:

Coronary atherosclerotic disease

CAP:

Carotid artery plaque

CHD:

Coronary heart disease

DBP:

Diastolic blood pressure

DM:

Diabetes mellitus

FPG:

Fasting plasma glucose

HbA1c:

Glycosylated hemoglobin

HDL-C:

High-density lipoprotein cholesterol

IQR:

Interquartile range

LDL-C:

Low-density lipoprotein cholesterol

OR:

Odds ratio

pre-DM:

pre-diabetes mellitus

SBP:

Systolic blood pressure

T2DM:

Type 2 diabetes mellitus

TC:

Total cholesterol

TG:

Triglyceride

References

  1. C.W. Tsao, A.W. Aday, Z.I. Almarzooq, C.A.M. Anderson, P. Arora, C.L. Avery, C.M. Baker-Smith, A.Z. Beaton, A.K. Boehme, A.E. Buxton, Y. Commodore-Mensah, M.S.V. Elkind, K.R. Evenson, C. Eze-Nliam, S. Fugar, G. Generoso, D.G. Heard, S. Hiremath, J.E. Ho, R. Kalani, D.S. Kazi, D. Ko, D.A. Levine, J. Liu, J. Ma, J.W. Magnani, E.D. Michos, M.E. Mussolino, S.D. Navaneethan, N.I. Parikh, R. Poudel, M. Rezk-Hanna, G.A. Roth, N.S. Shah, M.P. St-Onge, E.L. Thacker, S.S. Virani, J.H. Voeks, N.Y. Wang, N.D. Wong, S.S. Wong, K. Yaffe, S.S. Martin; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee, Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation 147(8), e93–e621 (2023). https://doi.org/10.1161/CIR.0000000000001123

    Article  PubMed  Google Scholar 

  2. B.Q. Yin, Y.H. Guo, Y. Liu, Y.Y. Zhao, S.M. Huang, X.W. Wei, H.S. Wang, R.Y. Liu, Y. Liu, Y.P. Tang, Molecular mechanism of Chuanxiong Rhizoma in treating coronary artery diseases. Chin. Herb. Med. 13(3), 396–402 (2021). https://doi.org/10.1016/j.chmed.2021.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  3. D.M. Xing, M.J. Zhu, C.X. Liu, H. Wang, Outcome measures in clinical trials of traditional Chinese medicine for stable angina pectoris. Acupunct. Herb. Med. 1(2), 99–106 (2021). https://doi.org/10.1097/HM9.0000000000000014

    Article  Google Scholar 

  4. J.P. Duggan, A.S. Peters, G.D. Trachiotis, J.L. Antevil, Epidemiology of coronary artery disease. Surg. Clin. North Am. 102(3), 499–516 (2022). https://doi.org/10.1016/j.suc.2022.01.007

    Article  PubMed  Google Scholar 

  5. Z. Li, Q. Cheng, Y. Liu, X. Cheng, S. Wang, Y. He, X. Wang, M. Huang, Y. Li, X. Xue, Y. Xu, L. Li, Y. Zheng, R. Yang, S. Gao, C. Yu, Low-/high-density lipoprotein cholesterol ratio and carotid plaques in patients with coronary heart disease: a Chinese cohort study. Lipids Health Dis. 20(1), 144 (2021). https://doi.org/10.1186/s12944-021-01575-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. T. Hirata, Y. Arai, M. Takayama, Y. Abe, K. Ohkuma, T. Takebayashi, Carotid plaque score and risk of cardiovascular mortality in the oldest old: results from the TOOTH study. J. Atheroscler. Thromb. 25(1), 55–64 (2018). https://doi.org/10.5551/jat.37911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. North American Symptomatic Carotid Endarterectomy Trial, Methods, patient characteristics, and progress. Stroke 22(6), 711–720 (1991). https://doi.org/10.1161/01.str.22.6.711

    Article  Google Scholar 

  8. D.H.K. van Dam-Nolen, A.C. van Dijk, G.A.J.C. Crombag, C. Lucci, M.E. Kooi, J. Hendrikse, P.J. Nederkoorn, M.J.A.P. Daemen, A.F.W. van der Steen, P.J. Koudstaal, F. Kronenberg, J.E. Roeters van Lennep, M.T. Mulder, A. van der Lugt, Lipoprotein(a) levels and atherosclerotic plaque characteristics in the carotid artery: The Plaque at RISK (PARISK) study. Atherosclerosis 329, 22–29 (2021). https://doi.org/10.1016/j.atherosclerosis.2021.06.004

    Article  CAS  PubMed  Google Scholar 

  9. X. He, G. Kuang, Y. Wu, C. Ou, Emerging roles of exosomal miRNAs in diabetes mellitus. Clin. Transl. Med. 11(6), e468 (2021). https://doi.org/10.1002/ctm2.468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. Alegre-Díaz, W. Herrington, M. López-Cervantes, L. Gnatiuc, R. Ramirez, M. Hill, C. Baigent, M.I. McCarthy, S. Lewington, R. Collins, G. Whitlock, R. Tapia-Conyer, R. Peto, P. Kuri-Morales, J.R. Emberson, Diabetes and cause-specific mortality in Mexico city. N. Engl. J. Med. 375(20), 1961–1971 (2016). https://doi.org/10.1056/NEJMoa1605368

    Article  PubMed  PubMed Central  Google Scholar 

  11. B. Murphy-Chutorian, G. Han, S.R. Cohen, Dermatologic manifestations of diabetes mellitus: a review. Endocrinol. Metab. Clin. North Am. 42(4), 869–898 (2013). https://doi.org/10.1016/j.ecl.2013.07.004

    Article  PubMed  Google Scholar 

  12. X. He, C. Ou, Y. Xiao, Q. Han, H. Li, S. Zhou, LncRNAs: key players and novel insights into diabetes mellitus. Oncotarget 8(41), 71325–71341 (2017). https://doi.org/10.18632/oncotarget.19921

    Article  PubMed  PubMed Central  Google Scholar 

  13. J.L. Jin, Y.X. Cao, H.H. Liu, H.W. Zhang, Y.L. Guo, N.Q. Wu, C.G. Zhu, R.X. Xu, Y. Gao, J. Sun, Q. Dong, J.J. Li, Impact of free fatty acids on prognosis in coronary artery disease patients under different glucose metabolism status. Cardiovasc Diabetol. 18(1), 134 (2019). https://doi.org/10.1186/s12933-019-0936-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H.H. Liu, Y.X. Cao, S. Li, Y.L. Guo, C.G. Zhu, N.Q. Wu, Y. Gao, Q.T. Dong, X. Zhao, Y. Zhang, D. Sun, J.J. Li, Impacts of prediabetes mellitus alone or plus hypertension on the coronary severity and cardiovascular outcomes. Hypertension 71(6), 1039–1046 (2018). https://doi.org/10.1161/HYPERTENSIONAHA.118.11063

    Article  CAS  PubMed  Google Scholar 

  15. J.L. Jin, Y.X. Cao, H.W. Zhang, D. Sun, Q. Hua, Y.F. Li, Y.L. Guo, N.Q. Wu, C.G. Zhu, Y. Gao, Q.T. Dong, H.H. Liu, Q. Dong, J.J. Li, Lipoprotein(a) and cardiovascular outcomes in patients with coronary artery disease and prediabetes or diabetes. Diabetes Care 42(7), 1312–1318 (2019). https://doi.org/10.2337/dc19-0274

    Article  CAS  PubMed  Google Scholar 

  16. S. Niroumand, M. Khajedaluee, M. Khadem-Rezaiyan, M. Abrishami, M. Juya, G. Khodaee, M. Dadgarmoghaddam, Atherogenic Index of Plasma (AIP): a marker of cardiovascular disease. Med. J. Islam Repub. Iran 29, 240 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. J.C. Fernández-Macías, A.C. Ochoa-Martínez, J.A. Varela-Silva, I.N. Pérez-Maldonado, Atherogenic index of plasma: novel predictive biomarker for cardiovascular illnesses. Arch. Med. Res. 50(5), 285–294 (2019). https://doi.org/10.1016/j.arcmed.2019.08.009

    Article  CAS  PubMed  Google Scholar 

  18. G. Cai, W. Liu, S. Lv, X. Wang, Y. Guo, Z. Yan, Y. Du, Y. Zhou, Gender-specific associations between atherogenic index of plasma and the presence and severity of acute coronary syndrome in very young adults: a hospital-based observational study. Lipids Health Dis. 18(1), 99 (2019). https://doi.org/10.1186/s12944-019-1043-2

    Article  PubMed  PubMed Central  Google Scholar 

  19. X. Zhang, X. Zhang, X. Li, J. Feng, X. Chen, Association of metabolic syndrome with atherogenic index of plasma in an urban Chinese population: a 15-year prospective study. Nutr. Metab. Cardiovasc Dis. 29(11), 1214–1219 (2019). https://doi.org/10.1016/j.numecd.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  20. B. Joob, V. Wiwanitkit, Atherogenic index of plasma for the assessment of cardiovascular risk factors. Ann. Afr. Med. 16(3), 148 (2017). https://doi.org/10.4103/aam.aam_332_16

    Article  PubMed  PubMed Central  Google Scholar 

  21. J.M. Flack, B. Adekola, Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc Med. 30(3), 160–164 (2020). https://doi.org/10.1016/j.tcm.2019.05.003

    Article  PubMed  Google Scholar 

  22. Joint Committee for Developing Chinese guidelines on Prevention and Treatment of Dyslipidemia in Adults, Chinese guidelines on prevention and treatment of dyslipidemia in adults. Zhonghua Xin Xue Guan Bing. Za Zhi 35(5), 390–419 (2007).

    Google Scholar 

  23. L. Yang, Z. Li, Y. Song, Y. Liu, H. Zhao, Y. Liu, T. Zhang, Y. Yuan, X. Cai, S. Wang, P. Wang, S. Gao, L. Li, Y. Li, C. Yu, Study on urine metabolic profiling and pathogenesis of hyperlipidemia. Clin. Chim. Acta 495, 365–373 (2019). https://doi.org/10.1016/j.cca.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  24. Y. Liu, Y. Zhu, W. Jia, D. Sun, L. Zhao, C. Zhang, C. Wang, G. Chen, S. Fu, Y. Bo, Y. Xing, Association between lipid profiles and presence of carotid plaque. Sci. Rep. 9(1), 18011 (2019). https://doi.org/10.1038/s41598-019-54285-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R.S. Barua, N.A. Rigotti, N.L. Benowitz, K.M. Cummings, M.A. Jazayeri, P.B. Morris, E.V. Ratchford, L. Sarna, E.C. Stecker, B.S. Wiggins, 2018 ACC expert consensus decision pathway on tobacco cessation treatment: a report of the American College of cardiology task force on clinical expert consensus documents. J. Am. Coll. Cardiol. 72(25), 3332–3365 (2018). https://doi.org/10.1016/j.jacc.2018.10.027

    Article  PubMed  Google Scholar 

  26. A.Z. Fan, W.J. Ruan, S.P. Chou, Re-examining the relationship between alcohol consumption and coronary heart disease with a new lens. Prev. Med. 118, 336–343 (2019). https://doi.org/10.1016/j.ypmed.2018.11.022

    Article  PubMed  Google Scholar 

  27. H. Huang, X. Yu, L. Li, G. Shi, F. Li, J. Xiao, Z. Yun, G. Cai, Atherogenic index of plasma is related to coronary atherosclerotic disease in elderly individuals: a cross-sectional study. Lipids Health Dis. 20(1), 68 (2021). https://doi.org/10.1186/s12944-021-01496-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. G. Zhu, J. Hom, Y. Li, B. Jiang, F. Rodriguez, D. Fleischmann, D. Saloner, M. Porcu, Y. Zhang, L. Saba, M. Wintermark, Carotid plaque imaging and the risk of atherosclerotic cardiovascular disease. Cardiovasc Diagn. Ther. 10(4), 1048–1067 (2020). https://doi.org/10.21037/cdt.2020.03.10

    Article  PubMed  PubMed Central  Google Scholar 

  29. Y. Li, G. Zhu, V. Ding, Y. Huang, B. Jiang, R.L. Ball, F. Rodriguez, D. Fleischmann, M. Desai, D. Saloner, L. Saba, J. Hom, M. Wintermark, Assessing the relationship between atherosclerotic cardiovascular disease risk score and carotid artery imaging findings. J. Neuroimag. 29(1), 119–125 (2019). https://doi.org/10.1111/jon.12573

    Article  Google Scholar 

  30. M. Dobiášová, Atherogenic impact of lecithin-cholesterol acyltransferase and its relation to cholesterol esterification rate in HDL (FER(HDL)) and AIP [log(TG/HDL-C)] biomarkers: the butterfly effect? Physiol. Res. 66(2), 193–203 (2017). https://doi.org/10.33549/physiolres.933621.

  31. J. Wu, Q. Zhou, Z. Wei, J. Wei, M. Cui, Atherogenic index of plasma and coronary artery disease in the adult population: a meta-analysis. Front. Cardiovasc. Med. 8, 817441 (2021). https://doi.org/10.3389/fcvm.2021.817441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. N. Puig, E. Jiménez-Xarrié, P. Camps-Renom, S. Benitez, Search for reliable circulating biomarkers to predict carotid plaque vulnerability. Int J. Mol. Sci. 21(21), 8236 (2020). https://doi.org/10.3390/ijms21218236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O. Karayiğit, A. K. Dolu, M. C. Çelik, C. Özkan, B. Demirtaş, Relationship between the atherogenic index of plasma and non-dipping circadian pattern in hypertensive patients. Med. Princ. Pract. (2022). https://doi.org/10.1159/000527662

  34. G. Yildiz, E. Hür, A. Özçiçek, F. Candan, M. Kayatas, The mean platelet volume and atherogenic index of plasma in nondipper normotensive individuals compared to dippers. Clin. Exp. Hypertens. 35(1), 35–39 (2013). https://doi.org/10.3109/10641963.2012.689043

    Article  CAS  PubMed  Google Scholar 

  35. T. Kubozono, M. Miyata, S. Kawasoe, S. Ojima, S. Yoshifuku, H. Miyahara, S. Maenohara, M. Ohishi, High pulse wave velocity has a strong impact on early carotid atherosclerosis in a Japanese general male population. Circ. J. 81(3), 310–315 (2017). https://doi.org/10.1253/circj.CJ-16-0687

    Article  CAS  PubMed  Google Scholar 

  36. J.D. Humphrey, D.G. Harrison, C.A. Figueroa, P. Lacolley, S. Laurent, Central artery stiffness in hypertension and aging: a problem with cause and consequence. Circ. Res. 118(3), 379–381 (2016). https://doi.org/10.1161/CIRCRESAHA.115.307722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. H. Chen, Y. Chen, W. Wu, Z. Cai, Z. Chen, X. Yan, S. Wu, Total cholesterol, arterial stiffness, and systolic blood pressure: a mediation analysis. Sci. Rep. 11(1), 1330 (2021). https://doi.org/10.1038/s41598-020-79368-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. X. Ma, Y. Sun, Y. Cheng, H. Shen, F. Gao, J. Qi, L. Yang, Z. Wang, D. Shi, Y. Liu, X. Liu, Y. Zhou, Prognostic impact of the atherogenic index of plasma in type 2 diabetes mellitus patients with acute coronary syndrome undergoing percutaneous coronary intervention. Lipids Health Dis. 19(1), 240 (2020). https://doi.org/10.1186/s12944-020-01418-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. L. Fu, Y. Zhou, J. Sun, Z. Zhu, Z. Xing, S. Zhou, Y. Wang, S. Tai, Atherogenic index of plasma is associated with major adverse cardiovascular events in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 20(1), 201 (2021). https://doi.org/10.1186/s12933-021-01393-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Murguía-Romero, J.R. Jiménez-Flores, S.C. Sigrist-Flores, M.A. Espinoza-Camacho, M. Jiménez-Morales, E. Piña, A.R. Méndez-Cruz, R. Villalobos-Molina, G.M. Reaven, Plasma triglyceride/HDL-cholesterol ratio, insulin resistance, and cardiometabolic risk in young adults. J. Lipid Res. 54(10), 2795–2799 (2013). https://doi.org/10.1194/jlr.M040584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M.R. Salazar, H.A. Carbajal, W.G. Espeche, M. Aizpurúa, P.M. Maciel, G.M. Reaven, Identification of cardiometabolic risk: visceral adiposity index versus triglyceride/HDL cholesterol ratio. Am. J. Med. 127(2), 152–157 (2014). https://doi.org/10.1016/j.amjmed.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  42. J.A. Beckman, M.A. Creager, P. Libby, Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287(19), 2570–2581 (2002). https://doi.org/10.1001/jama.287.19.2570

    Article  CAS  PubMed  Google Scholar 

  43. S.J. Nicholls, E.M. Tuzcu, S. Kalidindi, K. Wolski, K.W. Moon, I. Sipahi, P. Schoenhagen, S.E. Nissen, Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J. Am. Coll. Cardiol. 52(4), 255–262 (2008). https://doi.org/10.1016/j.jacc.2008.03.051

    Article  CAS  PubMed  Google Scholar 

  44. B. Tramunt, S. Smati, N. Grandgeorge, F. Lenfant, J.F. Arnal, A. Montagner, P. Gourdy, Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 63(3), 453–461 (2020). https://doi.org/10.1007/s00125-019-05040-3

    Article  PubMed  Google Scholar 

  45. F. Bragg, M.V. Holmes, A. Iona, Y. Guo, H. Du, Y. Chen, Z. Bian, L. Yang, W. Herrington, D. Bennett, I. Turnbull, Y. Liu, S. Feng, J. Chen, R. Clarke, R. Collins, R. Peto, L. Li, Z. Chen; China Kadoorie Biobank Collaborative Group, Association between diabetes and cause-specific mortality in rural and urban areas of China. JAMA 317(3), 280–289 (2017). https://doi.org/10.1001/jama.2016.19720

    Article  PubMed  PubMed Central  Google Scholar 

  46. R. de Ritter, S.J.S. Sep, C.J.H. van der Kallen, M.T. Schram, A. Koster, A.A. Kroon, M.M.J. van Greevenbroek, S.J.P.M. Eussen, P.C. Dagnelie, M. de Jong, R.C. Vos, M. Woodward, M.L. Bots, S.A.E. Peters, C.D.A. Stehouwer, Adverse differences in cardiometabolic risk factor levels between individuals with pre-diabetes and normal glucose metabolism are more pronounced in women than in men: the Maastricht study. BMJ Open Diabetes Res Care 7(1), e000787 (2019). https://doi.org/10.1136/bmjdrc-2019-000787

    Article  PubMed  PubMed Central  Google Scholar 

  47. M.N. Christiansen, L. Køber, P. Weeke, R.S. Vasan, J.L. Jeppesen, J.G. Smith, G.H. Gislason, C. Torp-Pedersen, C. Andersson, Age-specific trends in incidence, mortality, and comorbidities of heart failure in Denmark, 1995 to 2012. Circulation 135(13), 1214–1223 (2017). https://doi.org/10.1161/CIRCULATIONAHA.116.025941

    Article  PubMed  Google Scholar 

  48. J. Tromp, S.M.A. Paniagua, E.S. Lau, N.B. Allen, M.J. Blaha, R.T. Gansevoort, H.L. Hillege, D.E. Lee, D. Levy, R.S. Vasan, P. van der Harst, W.H. van Gilst, M.G. Larson, S.J. Shah, R.A. de Boer, C.S.P. Lam, J.E. Ho, Age dependent associations of risk factors with heart failure: pooled population based cohort study. BMJ 372, n461 (2021). https://doi.org/10.1136/bmj.n461

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the participants in the study, the members of the survey teams, and the groups for providing financial support.

Funding

This study was supported by the National Basic Research Program of China (973 project, grant number2014CB542902) and the National Natural Science Fund project (approval number82074140).

Author information

Authors and Affiliations

Authors

Contributions

C.Q.Y., S.G., X.L.W., and Y.Y.H. participated in the study design and statistical analysis; Y.Y.H. and Z.L. analyzed the data and drafted the manuscript; and L.Y., Y.J.L., L.L., and R.R.Y. participated in data collection. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xianliang Wang, Shan Gao or Chunquan Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the ethics committee of Tianjin University of Traditional Chinese Medicine (TJUTCM-EC20190008) and was registered in the Chinese Clinical Trial Registry (ChiCTR-1900024535) and Clinical Trials.gov (NCT04026724).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Li, Z., Yu, L. et al. Association between the atherogenic index of plasma and carotid artery plaques in patients with coronary heart disease in different glucose metabolism states: an RCSCD-TCM study in Tianjin, China. Endocrine 81, 252–261 (2023). https://doi.org/10.1007/s12020-023-03389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03389-5

Keywords

Navigation