Skip to main content

Advertisement

Log in

Real-life utility of five-gene panel test in preoperative thyroid fine-needle aspiration biopsy: a large cohort of 740 patients study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Fine-needle aspiration (FNA) biopsy is an effective method to discriminate malignant thyroid nodules but reaches indeterminate results in approximately 30% of cases. Molecular testing can improve the diagnostic accuracy of FNA. This study aimed to investigate the real-life utility of the five-gene panel testing in thyroid FNAs.

Methods

759 thyroid nodules from 740 patients under FNAs were retrospectively enrolled. Gene mutation information and clinical parameters, including age, gender, tumor size, and lymph node metastasis, were respectively recorded. Cytological results were classified based on The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC). We analyzed mutational hotspots in BRAF, KRAS, NRAS, HRAS, and TERT genes from FNA specimens. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated to assess diagnostic performance.

Results

We identified 549 five-gene mutations in 759 nodules (72.3%), and the mutation frequency increased from the lower TBSRTC category to the upper category. BRAF.p.V600E showed the highest mutation incidence (71.3%) in the five-gene panel, correlated with the small to medium diameter (p = 0.008, p = 0.012) and high cytological categories (p < 0.001). The sensitivity, specificity, PPV, NPV, and accuracy of the combination of FNA cytology and five-gene detection were 96.83%, 100%, 100%, 42.86%, and 96.90%, respectively.

Conclusions

The mutation frequency of the five-gene panel is 72.3% in thyroid FNAs. BRAF.p.V600E has the highest alteration rate, which is closely associated with tumor size and cytological results. The five-gene panel can improve the sensitivity and accuracy of FNA cytology, which may represent a valid adjunct technique in distinguishing thyroid nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26, 1–133 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  2. E.S. Cibas, S.Z. Ali, The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 27(11), 1341–1346 (2017)

    Article  PubMed  Google Scholar 

  3. J. Zhou, L. Yin, X. Wei, S. Zhang, Y. Song, B. Luo et al. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: the C-TIRADS. Endocrine 70, 256–279 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. R. Paschke, S. Cantara, A. Crescenzi, B. Jarzab, T.J. Musholt, Sobrinho, M. Simoes, European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur. Thyroid J. 6(3), 115–129 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  5. G. Grani, M. Sponziello, S. Filetti, C. Durante, Molecular analysis of fine-needle aspiration cytology in thyroid disease: where are we? Curr. Opin. Otolaryngol. Head. Neck Surg. 29(2), 107–112 (2021)

    Article  PubMed  Google Scholar 

  6. P. Stewardson, M. Eszlinger, R. Paschke, DIAGNOSIS OF ENDOCRINE DISEASE: Usefulness of genetic testing of fine-needle aspirations for diagnosis of thyroid cancer. Eur. J. Endocrinol. 187(3), R41–r52 (2022)

    Article  CAS  PubMed  Google Scholar 

  7. S. Bardet, N. Goardon, J. Lequesne, D. Vaur, R. Ciappuccini, A. Leconte et al. Diagnostic and prognostic value of a 7-panel mutation testing in thyroid nodules with indeterminate cytology: the SWEETMAC study. Endocrine 71(2), 407–417 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. L. Yip, M.N. Nikiforova, J.Y. Yoo, K.L. McCoy, M.T. Stang, M.J. Armstrong et al. Tumor genotype determines phenotype and disease-related outcomes in thyroid cancer: a study of 1510 patients. Ann. Surg. 262, 519–525 (2015)

    Article  PubMed  Google Scholar 

  9. J.A. Fagin, S.A. Wells Jr, Biologic and Clinical Perspectives on Thyroid Cancer. N. Engl. J. Med. 375(23), 2307 (2016)

    PubMed  Google Scholar 

  10. Y. Wu, T. Xu, X. Cao, X. Zhao, H. Deng, J. Wang et al. BRAF (V600E) vs. TIRADS in predicting papillary thyroid cancers in Bethesda system I, III, and V nodules. Cancer Biol. Med. 16(1), 131–138 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  11. H. Guan, G. Toraldo, S. Cerda, F.A. Godley, S.R. Rao, D. McAneny et al. Utilities of RAS Mutations in Preoperative Fine Needle Biopsies for Decision Making for Thyroid Nodule Management: Results from a Single-Center Prospective Cohort. Thyroid 30(4), 536–547 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. G. Gandolfi, M. Ragazzi, A. Frasoldati, S. Piana, A. Ciarrocchi, V. Sancisi, TERT promoter mutations are associated with distant metastases in papillary thyroid carcinoma. Eur. J. Endocrinol. 172(4), 403–413 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. R. Liu, M. Xing, TERT promoter mutations in thyroid cancer. Endocr. Relat. Cancer. 23(3), R143–R155 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. F.N. Tessler, W.D. Middleton, E.G. Grant, J.K. Hoang, L.L. Berland, S.A. Teefey et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radio. 14(5), 587–595 (2017)

    Article  Google Scholar 

  15. I. Sugitani, Y. Ito, D. Takeuchi, H. Nakayama, C. Masaki, H. Shindo et al. Indications and Strategy for Active Surveillance of Adult Low-Risk Papillary Thyroid Microcarcinoma: Consensus Statements from the Japan Association of Endocrine Surgery Task Force on Management for Papillary Thyroid Microcarcinoma. Thyroid 31(2), 183–192 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  16. M. Auger, R. Nayar, W.E. Khalbuss, G.A. Barkan, C.C. Benedict, R. Tambouret et al. Implementation of the Bethesda System for Reporting Thyroid Cytopathology: observations from the 2011 thyroid supplemental questionnaire of the College of American Pathologists. Arch. Pathol. Lab Med. 137(11), 1555–1559 (2013)

    Article  PubMed  Google Scholar 

  17. C. Bellevicine, I. Migliatico, R. Sgariglia, M. Nacchio, E. Vigliar, P. Pisapia et al. Evaluation of BRAF, RAS, RET/PTC, and PAX8/PPARg alterations in different Bethesda diagnostic categories: A multicentric prospective study on the validity of the 7-gene panel test in 1172 thyroid FNAs deriving from different hospitals in South Italy. Cancer Cytopathol. 128(2), 107–118 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. R.I. Haddad, C. Nasr, L. Bischoff, N.L. Busaidy, D. Byrd, G. Callender et al. NCCN Guidelines Insights: Thyroid Carcinoma, Version 2.2018. J. Natl Compr. Canc Netw. 16(12), 1429–1440 (2018)

    Article  PubMed  Google Scholar 

  19. B. Brahma, E.D. Yulian, M. Ramli, I. Setianingsih, W. Gautama, P. Brahma et al. Surgical perspective of T1799A BRAF mutation diagnostic value in papillary thyroid carcinoma. Asian Pac. J. Cancer Prev. 14(1), 31–37 (2013)

    Article  PubMed  Google Scholar 

  20. Q. Wang, N. Zhao, J. Zhang, Gene Mutation Analysis in Papillary Thyroid Carcinoma Using a Multi-Gene Panel in China. Int J. Gen. Med. 14, 5139–5148 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Y.E. Nikiforov, Role of molecular markers in thyroid nodule management: then and now. Endocr. Pr. 23(8), 979–988 (2017)

    Article  Google Scholar 

  22. R.B. Smith, R.L. Ferris, Utility of Diagnostic Molecular Markers for Evaluation of Indeterminate Thyroid Nodules. JAMA Otolaryngol. Head. Neck Surg. 142(5), 421–422 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  23. S.Y. Lu, Y.C. Chen, C.F. Zhu, J. Chen, Q.Y. Zhou, M.M. Zhang et al. A five-gene panel refines differential diagnosis of thyroid nodules. J. Clin. Lab Anal. 35(9), e23920 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y.E. Nikiforov, M.N. Nikiforova, Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 7(10), 569–580 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. X. Liu, J. Bishop, Y. Shan, S. Pai, D. Liu, A.K. Murugan et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr. Relat. Cancer. 20(4), 603–610 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Decaussin-Petrucci, F. Descotes, L. Depaepe, V. Lapras, M.L. Denier, F. Borson-Chazot et al. Molecular testing of BRAF, RAS and TERT on thyroid FNAs with indeterminate cytology improves diagnostic accuracy. Cytopathology 28(6), 482–487 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. M. Argyropoulou, A.S. Veskoukis, P.M. Karanatsiou, A. Manolakelli, I. Kostoglou-Athanassiou, G. Vilaras et al. Low Prevalence of TERT Promoter, BRAF and RAS Mutations in Papillary Thyroid Cancer in the Greek Population. Pathol. Oncol. Res. 26(1), 347–354 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. X. Su, X. Jiang, X. Xu, W. Wang, X. Teng, A. Shao et al. Diagnostic value of BRAF (V600E)-mutation analysis in fine-needle aspiration of thyroid nodules: a meta-analysis. Onco. Targets Ther. 9, 2495–2509 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. S.E. Lee, T.S. Hwang, Y.L. Choi, W.Y. Kim, H.S. Han, S.D. Lim et al. Molecular Profiling of Papillary Thyroid Carcinoma in Korea with a High Prevalence of BRAF(V600E) Mutation. Thyroid 27(6), 802–810 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. J. Liang, W. Cai, D. Feng, H. Teng, F. Mao, Y. Jiang et al. Genetic landscape of papillary thyroid carcinoma in the Chinese population. J. Pathol. 244(2), 215–226 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. A. Jin, J. Xu, Y. Wang, The role of TERT promoter mutations in postoperative and preoperative diagnosis and prognosis in thyroid cancer. Medicine. (Baltim.) 97(29), e11548 (2018)

    Article  CAS  Google Scholar 

  32. M. Capezzone, S. Cantara, A. Di Santo, A. Sagnella, T. Pilli, L. Brilli et al. The Combination of Sonographic Features and the Seven-Gene Panel May be Useful in the Management of Thyroid Nodules With Indeterminate Cytology. Front. Endocrinol. (Lausanne) 12, 613727 (2021)

    Article  PubMed  Google Scholar 

  33. E.K. Alexander, G.C. Kennedy, Z.W. Baloch, E.S. Cibas, D. Chudova, J. Diggans et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N. Engl. J. Med. 367(8), 705–715 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. J.S. Bae, S.K. Choi, S. Jeon, Y. Kim, S. Lee, Y.S. Lee et al. Impact of NRAS Mutations on the Diagnosis of Follicular Neoplasm of the Thyroid. Int J. Endocrinol. 2014, 289834 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  35. M.E. Cabanillas, R. Dadu, P. Iyer, K.B. Wanland, N.L. Busaidy, A. Ying et al. Acquired Secondary RAS Mutation in BRAF(V600E)-Mutated Thyroid Cancer Patients Treated with BRAF Inhibitors. Thyroid 30(9), 1288–1296 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Kakarmath, H.T. Heller, C.A. Alexander, E.S. Cibas, J.F. Krane, J.A. Barletta et al. Clinical, Sonographic, and Pathological Characteristics of RAS-Positive Versus BRAF-Positive Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 101(12), 4938–4944 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. Puzziello, A. Guerra, A. Murino, G. Izzo, M. Carrano, E. Angrisani et al. Benign thyroid nodules with RAS mutation grow faster. Clin. Endocrinol. (Oxf.) 84(5), 736–740 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. M. Medici, N. Kwong, T.E. Angell, E. Marqusee, M.I. Kim, M.C. Frates et al. The variable phenotype and low-risk nature of RAS-positive thyroid nodules. BMC Med. 13, 184 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  39. V.A. Paulson, P. Shivdasani, T.E. Angell, E.S. Cibas, J.F. Krane, N.I. Lindeman et al. Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features Accounts for More Than Half of “Carcinomas” Harboring RAS Mutations. Thyroid 27(4), 506–511 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. S.G. Patel, S.E. Carty, K.L. McCoy, N.P. Ohori, S.O. LeBeau, R.R. Seethala et al. Preoperative detection of RAS mutation may guide extent of thyroidectomy. Surgery 161(1), 168–175 (2017)

    Article  PubMed  Google Scholar 

  41. T.H. Kim, Y.E. Kim, S. Ahn, J.Y. Kim, C.S. Ki, Y.L. Oh et al. TERT promoter mutations and long-term survival in patients with thyroid cancer. Endocr. Relat. Cancer. 23(10), 813–823 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81971627).

Author contributions

Concept and design: B.Z., J.T. Collection, analysis, and interpretation of data: L.W., H.L., S.H. Statistical analysis: J.T., J.M., X.X. Drafting of the manuscript: J.T. Approval of the version to be published: B.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Approval was obtained from the ethics committee of the China–Japan Friendship Hospital. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Informed consent

Written informed consent was obtained from all the patients included in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Ma, J., Xi, X. et al. Real-life utility of five-gene panel test in preoperative thyroid fine-needle aspiration biopsy: a large cohort of 740 patients study. Endocrine 80, 552–562 (2023). https://doi.org/10.1007/s12020-022-03286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03286-3

Keywords

Navigation